First-Principles Calculations and the Thermodynamics of Cementite

Article Preview

Abstract:

Thermodynamic data for the substitution of silicon and manganese in cementite have been estimated using first-principles methods in order to aid the design of steels where it is necessary to control the precipitation of this phase. The need for the calculations arises from the fact that for silicon the data cannot be measured experimentally; manganese is included in the analysis to allow a comparison with its known behaviour. The calculations for Fe3C, (Fe11Si4c)C4, (Fe11Si8d)C4, (Fe11Mn4c)C4 and (Fe11Mn8d)C4 are based on the total energy all-electron full-potential linearized augmented plane-wave method within the generalized gradient approximation to density functional theory. The output includes the ground state lattice constants, atomic positions and bulk moduli. It is found that (Fe11Si4c)C4 and (Fe11Si8d)C4 have about 52 and 37 kJ greater formation energy when compared with a mole of unit cells of pure cementite, whereas the corresponding energy for (Fe11Mn4c)C4 and (Fe11Mn8d)C4 is less by about 5 kJ mol1. These results for manganese match closely with published trends and data; a similar comparison is not possible for silicon but we correctly predict that the solubility in cementite should be minimal.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 638-642)

Pages:

3319-3324

Citation:

Online since:

January 2010

Export:

Price:

[1] O. Matsumura, Y. Sakuma, H. Takechi, Trans. ISIJ 27 (1987) 570-579.

Google Scholar

[2] O. Matsumura, Y. Sakuma, H. Takechi, Scripta Metall. 27 (1987) 1301- 1306.

Google Scholar

[3] F.G. Caballero, H.K.D.H. Bhadeshia, K.J.A. Mawella, D.G. Jones, P. Brown, Mater. Sci. and Technology 17 (2001) 512-516.

Google Scholar

[4] F.G. Caballero, H.K.D.H. Bhadeshia, K.J.A. Mawella, D.G. Jones, P. Brown, Mater. Sci. and Technology 17 (2001) 517-522.

Google Scholar

[5] F.G. Caballero, H.K.D.H. Bhadeshia, K.J.A. Mawella, D.G. Jones, P. Brown, Mater. Sci. and Technology 18 (2002) 279-284.

Google Scholar

[6] C. Garcia-Mateo, F.G. Caballero, H.K.D.H. Bhadeshia, ISIJ International 43 (2003) 1238-1243.

DOI: 10.2355/isijinternational.43.1238

Google Scholar

[7] C. Garcia-Mateo, F.G. Caballero, H.K.D.H. Bhadeshia, ISIJ International 43 (2003) 1821-1825.

DOI: 10.2355/isijinternational.43.1821

Google Scholar

[8] J.G. Speer, D.V. Edmonds, F.C. Rizzo, D.K. Matlock, Current Opinion in Solid State and Mater. Sci. 8 (2004) 219-237.

Google Scholar

[9] F.G. Caballero, H.K.D.H. Bhadeshia, Current Opinion in Solid State and Mater. Sci. 8 (2004) 251-257.

Google Scholar

[10] P.J. Jacques, Current Opinion in Solid State and Mat. Sci. 8 (2004) 259- 265.

Google Scholar

[11] Z.G. Yang, H.S. Fang, Current Opinion in Solid State and Mater. Sci. 9 (2005) 277-286.

Google Scholar

[12] B. De Cooman, Current Opinion in Solid State and Mater. Sci. 8 (2004) 285-303.

Google Scholar

[13] S. Chatterjee, M. Murugananth, H.K.D.H. Bhadeshia, Mater. Sci. and Technology 23 (2007) 819.

Google Scholar

[14] E.C. Bain, Alloying Elements in Steel, American Society of Mater., Cleveland, Ohio, USA, (1939).

Google Scholar

[15] A.G. Allten, P. Payson, Trans. of ASM 45 (1953) 498-532.

Google Scholar

[16] W.S. Owen, Trans. of ASM 46 (1954) 812-829.

Google Scholar

[17] S.J. Matas, R.F. Hehemann, TMS-AIME 221 (1961) 179-185.

Google Scholar

[18] A.S. Keh, W.C. Leslie, Structure and Properties of Engineering Materials, Materials Science Research, vol. 1, Plenum Publishing, NY, USA, (1963).

Google Scholar

[19] J. Deliry, Memoires Scientifiques de la Revue de Metallurgie 62 (1965) 527-550.

Google Scholar

[20] J. Pomey, Memoires Scientifiques de la Revue de Metallurgie 63 (1966) 507- 532.

Google Scholar

[21] J. Gordine, I. Codd, J. of the Iron and Steel Ins. 207 (1969) 461-467.

Google Scholar

[22] R.F. Hehemann, The bainite transformation, in: H.I. Aaronson, V.F. Zackay (Eds. ), Phase Transformations, 1970, pp.397-432.

Google Scholar

[23] R. Le-Houillier, G. Begin, A. Dube, Metall. Trans. 2 (1971) 2645-2653.

Google Scholar

[24] G.W. Lorimer, R.M. Hobbs, N. Ridley, J. of the Iron and Steel Ins. 210 (1972) 757-764.

Google Scholar

[25] B.J.P. Sandvik, Metall. Trans. 13A (1982) 777-787.

Google Scholar

[26] B.J.P. Sandvik, Metall. & Mater. Transa. A 13A (1982) 789.

Google Scholar

[27] H.K.D.H. Bhadeshia, Mater. Sci. Forum 426-432 (2003) 35-42.

Google Scholar

[28] G. Ghosh, G.B. Olson, Acta Mater. 50 (2002) 2099-2119.

Google Scholar

[29] H. K. D. H. Bhadeshia, M. Lord, L. -E. Svensson, Trans. of JWRI 32 (2003) 43-52.

Google Scholar

[30] E. Wimmer, H. Krakauer, M. Weinert, A. J. Freeman, Phys. Rev. B 24 (1981) 864.

Google Scholar

[31] M. Weinert, E. Wimmer, A.J. Freeman, Phys. Rev. B 26 (1982) 4571-4578.

Google Scholar

[32] E.J. Fasiska, G.A. Jeffrey, Acta Crystall. 19 (1965) 463-471.

Google Scholar

[33] F.H. Herbstein, J. Smuts, Acta Crystall. 17 (1964) 1331-1332.

Google Scholar

[34] J. Haglund, G. Grimvall, T. Jarlborg, Phys. Rev. B 44 (1991) 2914-2919.

Google Scholar

[35] H.I. Faraoun, Y.D. Zhang, C. Esling, H. Aourag, J. of Appl. Phys. 99 (2006) 093508.

Google Scholar

[36] J. H. Jang, I. G. Kim and H. K. D. H. Bhadeshia Computational Mater. Sci. 44 (2009) 1319-1326.

Google Scholar

[37] N.I. Medvedeva, L.E. Kar'kina, A.L. Ivanovskii, Phys. Solid State 48 (2006) 15-19.

Google Scholar

[38] Information on http: /www. webelemtns. com.

Google Scholar

[39] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.

Google Scholar

[40] D. D. Koelling and B. N. Harmon, J. Phys. C : Solid St. Phys. 10 (1977) 3107.

Google Scholar

[41] G. Miyamoto, J. C. Oh, K. Hono, T. Furuhara, T. Maki, Acta Mater. 55 (2007) 5027-5038.

Google Scholar