Gas-Discharge Plasma-Assisted Functionalization of Titanium Implant Surfaces

Article Preview

Abstract:

A crucial factor for in-growth of metallic implants in the bone stock is the rapid cellular acceptance whilst prevention of bacterial adhesion on the surface. Such contradictorily adhesion events could be triggered by surface properties. There already exists fundamental knowledge about the influence of physicochemical surface properties like roughness, titanium dioxide modifications, cleanness, and (mainly ceramic) coatings on cell and microbial behavior in vitro and in vivo. The titanium surface can be equipped with antimicrobial properties by plasma-based copper implantation, which allows the release and generation of small concentrations of copper ions during contact with water-based biological liquids. Additionally, the titanium surface was equipped with amino groups by the deposition of an ultrathin plasma polymer. This coating on the one hand does not significantly reduce the generation of copper ions, and on the other hand improves the adhesion and spreading of osteoblast cells. The process development was accompanied by physicochemical surface analyses like XPS, FTIR, contact angle, SEM, and AFM. Very thin modified layers were created, which are resistant to hydrolysis and delamination. These titanium surface functionalizations were found to have either an antimicrobial activity or cell-adhesive properties. Intramuscular implantation of titanium samples coated with the cell-adhesive plasma polymer in rats revealed a reduced inflammation reaction compared to uncoated titanium.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 638-642)

Pages:

700-705

Citation:

Online since:

January 2010

Export:

[1] D. Klee and H. Höcker: Adv. Polym. Sci. Vol. 149 (2000), pp.1-57.

Google Scholar

[2] P. K. Chu, J. Y. Chen, L. P. Wang and N. Huang: Mater. Sci. Eng. Vol. R 36 (2002), p.143206.

Google Scholar

[3] K. S. Siow, L. Britcher, S. Kumar and H. J. Griesser: Plasma Process. Polym. Vol. 3 (2006), pp.392-418.

Google Scholar

[4] P. Roach, D. Eglin, K. Rohde and C. C. Perry: J. Mater. Sci. Mater. Med. Vol. 18 (2007), pp.1263-1277.

Google Scholar

[5] A. Ohl and K. Schröder, in: Low temperature plasma physics, edited by R. Hippler, H. Kersten, M. Schmidt and K. H. Schoenbach, VCH Wiley Berlin (2008), pp.803-819.

Google Scholar

[6] K. Schröder, R. Foest and A. Ohl, in: �on-thermal Plasma Chemistry and Physics, edited by J. Meichsner, M. Schmidt and H.E. Wagner, Taylor&Francis, Oxon, submitted.

Google Scholar

[7] U. Walschus, A. Hoene, H.G. Neumann, L. Wilhelm, S. Lucke, F. Lüthen, J. Rychly and M. Schlosser: Acta Biomater. Vol. 5 (2009), pp.776-784.

DOI: 10.1016/j.actbio.2008.09.003

Google Scholar

[8] E. Zimmermann, B. Geiger and L. Addadi: Biophys. J. Vol. 82 (2002), pp.1848-1857.

Google Scholar

[9] M. Cohen, E. Klein, B. Geiger and L. Addadi: Biophys. J. Vol. 85 (2003), p.1996-(2005).

Google Scholar

[10] F. Lüthen, R. Lange, P. Becker, J. Rychly, U. Beck and B. Nebe: Biomaterials Vol. 26 (2005), pp.2423-2440.

DOI: 10.1016/j.biomaterials.2004.07.054

Google Scholar

[11] B. Nebe, F. Lüthen, B. Finke, C. Bergemann, K. Schröder, J. Rychly, K. Liefeith and A. Ohl: Biomol. Eng. Vol. 24 (2007), pp.447-454.

DOI: 10.1016/j.bioeng.2007.07.004

Google Scholar

[12] J. J. Hostynek and H.I. Maibach: Rev. Environm. Health Vol. 18 (2003), pp.153-183.

Google Scholar

[13] G. Beamson and D. Briggs: The scienta ESCA 300 database, Wiley Chichester, New York (1992).

Google Scholar

[14] B.W. Muir, A. Nelson, A. Fairbrother, C. Fong, P.G. Hartley, M. James and K.M. McLean: Plasma Process. Polym. Vol. 4 (2007), pp.433-444.

DOI: 10.1002/ppap.200600175

Google Scholar

[15] J. Friedrich, G. Kühn, R. Mix, A. Fritz and A. Schönhals: J: Adhes. Sci. Technol. Vol. 17 (2003), pp.1591-1617.

Google Scholar

[16] B. Finke, F. Lüthen, K. Schröder; P.D. Müller, C. Bergemann, M. Frant, A. Ohl and J.B. Nebe: Biomaterials, Vol. 28 (2007), pp.4521-4534.

DOI: 10.1016/j.biomaterials.2007.06.028

Google Scholar