The Limits of Post Oxidation Annealing in NO

Article Preview

Abstract:

We report on the benefits and the shortcomings of the NO annealing process following observations made on capacitors and transistors with various nitrogen densities at the SiO2/SiC interface. While NO annealing leads to a progressively lower interface state density and higher inversion mobility, consistent with Coulomb-limited transport, MOSFET properties are still limited by the relatively poor interface quality. Moreover, NO induces a large amount of hole traps in the oxide. We establish that these properties are not related to the oxidation rate and we discuss them in terms of the nitrogen content.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 645-648)

Pages:

693-696

Citation:

Online since:

April 2010

Export:

Price:

[1] H. Li, S. Dimitrijev, H. B. Harrison, and D. Sweatman, Appl. Phys. Lett. Vol. 70 (1997), p. (2028).

Google Scholar

[2] G. Y. Chung, C. C. Tin, J. R. Williams, K. McDonald, M. D. Ventra, S. T. Pantelides, L. C. Feldman, and R. A. Weller, Appl. Phys. Lett. Vol. 76 (2000), p.1713.

Google Scholar

[3] J. Rozen, S. Dhar, M. E. Zvanut, J. R. Williams, and L. C. Feldman, J. Appl. Phys. 105 (2009), 124506.

Google Scholar

[4] J. Rozen, S. Dhar, S. T. Pantelides, L. C. Feldman, S. Wang, J. R. Williams, and V. V. Afanas'ev, Appl. Phys. Lett. Vol. 91 (2007), 153503.

Google Scholar

[5] J. Rozen, S. Dhar, S. K. Dixit, V. V. Afanas'ev, F. O. Roberts, H. L. Dang, S. Wang, S. T. Pantelides, J. R. Williams, and L. C. Feldman, J. Appl. Phys. Vol. 103 (2008), 124513.

Google Scholar

[6] S. S. Tan, T. P. Chen, C. H. Ang, and L. Chan, Microelectron. Reliab. Vol. 45 (2005), p.19.

Google Scholar

[7] J. Rozen, A. C. Ahyi, X. Zhu, J. R. Williams, and L. C. Feldman, submitted to IEEE Electron. Dev. Lett.

Google Scholar

[8] E. Arnold and D. Alok, IEEE Trans. Electron Dev. Vol. 48 (2001), p.1870.

Google Scholar

[9] V. Tilak, K. Matocha, and G. Dunne, IEEE Trans. Electron Dev. Vol. 54 (2007), p.2823.

Google Scholar

[10] A. Poggi, F. Moscatelli, S. Solmi, and R. Nipoti, IEEE Trans. Electron Dev. Vol. 55 (2008), p. (2021).

Google Scholar

[11] T. L. Biggerstaff, C. L. Reynolds, Jr., T. Zheleva, A. Lelis, D. Habersat, S. Haney, S. -H. Ryu, A. Agarwal, and G. Duscher, Appl. Phys. Lett. Vol. 95 (2009), p.032108.

DOI: 10.1063/1.3144272

Google Scholar

[12] E. A. Ray, J. Rozen, S. Dhar, J. R. Williams, and L. C. Feldman, J. Appl. Phys. 103 (2008), 023522.

Google Scholar

[13] T. Hori, IEEE Trans. Electron Dev. Vol. 37 (1990), p. (2058).

Google Scholar

[14] T. Shirasawa et al., Phys. Rev. B Vol. 79 (2009), 241301(R).

Google Scholar

[15] H. Yano, Y. Furumoto, T. Niwa, T. Hatayama, Y. Uraoka, and T. Fukui, Mater. Sci. Forum Vol. 457 (2004), p.1333.

Google Scholar

[16] X. Zhu, Ph.D. thesis, Auburn University, (2008).

Google Scholar

[17] K. McDonald, M. B. Huang, R. A. Weller, L. C. Feldman, J. R. Williams, F. C. Stedile, I. J. R. Baumvol, and C. Radtke, Appl. Phys. Lett. Vol. 76 (2000), p.568.

DOI: 10.1063/1.125819

Google Scholar