High Water Diffusivity in Low Hydration Plasma-Polymerised Proton Exchange Membranes

Article Preview

Abstract:

This paper compares proton diffusion through plasma-polymerised proton-exchange membranes (PEMs) produced using traditional wet-chemical methods (Nafion®) and those produced using plasma-polymerisation. Using quasielastic neutron scattering and a simple model of proton motion we find the measured diffusion-rate of protons in the plasma-polymerised material and Nafion® is the same (within 1 standard error) even though the plasma-polymerised membrane has 80 % less water than the Nafion®. We attribute this result to the highly cross-linked structure of the plasma-polymerised membrane.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 654-656)

Pages:

2871-2874

Citation:

Online since:

June 2010

Export:

Price:

[1] M.A. Hickner, B.S. Pivovar, Fuel Cells 5 (2005) 213.

Google Scholar

[2] N. Inagaki, S. Tasaka, Z. Chengfei, Polym. Bull. 26 (1991) 187.

Google Scholar

[3] N. Inagaki, S. Tasaka, Y. Horikawa, J. Polym. Sci. Pol. Chem. 27 (1989) 3495.

Google Scholar

[4] N. Inagaki, S. Tasaka, T. Kurita, Polym. Bull. 22 (1989) 15.

Google Scholar

[5] Z. Ogumi, Y. Uchimoto, Z. Takehara, J. Electrochem. Soc. 137 (1990) 3319.

Google Scholar

[6] Z. Ogumi, Y. Uchimoto, K. Yasuda, Z.I. Takehara, Chem. Lett. (1990) 953.

Google Scholar

[7] C.J. Brumlik, A. Parthasarathy, W.J. Chen, C.R. Martin, J. Electrochem. Soc. 141 (1994), 2273.

Google Scholar

[8] K. Yasuda, Y. Uchimoto, Z. Ogumi, Z. Takehara, J. Electrochem. Soc. 141 (1994), 2350.

Google Scholar

[9] L. Mex, J. Müller, Membrane Technology 1999 (1999), 5.

Google Scholar

[10] H. Mahdjoub, S. Roualdes, P. Sistat, N. Pradeilles, J. Durand, G. Pourcelly, Fuel Cells 5 (2005), 277.

DOI: 10.1002/fuce.200400066

Google Scholar

[11] A. Ennajdaoui, S. Roualdes, P. Brault, J. Durand, J. Power Sources, 195, (2010), 232.

Google Scholar

[12] S. Roualdes, M. Schieda, L. Durivault, I. Guesmi, E. Gerardin, J. Durand, Chem. Vapor Depos. 13 (2007) 361.

Google Scholar

[13] S. Roualdes, I. Topala, H. Mahdjoub, V. Rouessac, P. Sistat, J. Durand, J. Power Sources 158 (2006), 1270.

DOI: 10.1016/j.jpowsour.2005.10.047

Google Scholar

[14] Z. Jiang, Y. Meng, Y. Shi, Jpn. J. Appl. Phys. 47 (2008), 6891.

Google Scholar

[15] Z.Q. Jiang, Y.D. Meng, Z.J. Jiang, Y.C. Shi, Surf. Rev. Lett. 14 (2007), 1165.

Google Scholar

[16] http: /www. ill. fr/data_treat/lamp/front. html.

Google Scholar

[17] K. Yasuda, Y. Uchimoto, Z. Ogumi, Z. Takehara, J. Electrochem. Soc. 141 (1994) 2350.

Google Scholar

[18] O.E. Haas, J.M. Simon, S. Kjelstrup, A.L. Ramstad, P. Fouquet, J. Phys. Chem. C 112 (2008), 3121.

Google Scholar

[19] K.A. Page, J.K. Park, R.B. Moore, V.G. Sakai, Macromolecules 42 (2009) 2729.

Google Scholar

[20] J.C. Perrin, S. Lyonnard, F. Volino, J. Phys. Chem. C 111 (2007), 3393.

Google Scholar

[21] A.A. Pivovar, B.S. Pivovar, J. Phys. Chem. B 109 (2005), 785.

Google Scholar

[22] A.L. Rollet, J.P. Simonin, P. Turq, G. Gebel, R. Kahn, A. Vandais, J.P. Noel, C. Malveau, D. Canet, J. Phys. Chem. B 105 (2001) 4503.

DOI: 10.1021/jp0023462

Google Scholar

[23] F. Volino, M. Pineri, A.J. Dianoux, J. Polym. Sci. Pol. Chem. 20 (1982) 481.

Google Scholar

[24] A. J. Dianoux, M. Pineri, F. Volino, Mol. Phys. 46 (1982) 129.

Google Scholar