Microstructure Stability and Creep Behaviour of a Cu-0.2wt.%Zr Alloy Processed by Equal-Channel Angular Pressing

Article Preview

Abstract:

A dispersion-strengthened Cu-0.2 wt.% Zr alloy was subjected to equal-channel angular pressing (ECAP) at room temperature for up to 12 passes through route BC using a die having a channel angle of 90°. The microstructural investigations were performed using both transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Tensile creep tests were conducted at temperature 673 K and at the applied stress in the range from 80 to 180 MPa. The migration of boundaries and subsequent grain growth were restricted by Cu9Zr2 precipitates. The study was performed in order to evaluate the effects of severe plastic deformation and precipitation on creep behaviour and microstructure of the pressed alloy. It was found that creep behaviour is strongly dependent on number of ECAP passes. The pressed alloy after up to 4 ECAP passes exhibited a considerable improvement in creep properties in comparison with the unpressed alloy.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 667-669)

Pages:

821-826

Citation:

Online since:

December 2010

Export:

Price:

[1] R.Z. Valiev, R.K. Islamgaliev and I.V. Alexandrov: Prog. Mater. Sci. Vol. 45 (2000), p.103.

Google Scholar

[2] R. Z. Valiev and T.G. Langdon: Prog. Mater. Sci Vol. 51 (2006), p.881.

Google Scholar

[3] P. Král, J. Dvořák and V. Sklenička: Mater. Sci. Forum Vol. 584-586 (2008), p.846.

Google Scholar

[4] H.B. Geng, S.B. Kang, B.K. Min: Mat. Sci. Eng. A 373 (2004), p.229.

Google Scholar

[5] H. Hasegawa, S. Komura, A. Utsunomiya, Z. Horita, M. Furukawa, M. Nemoto and T.G. Langdon: Mater. Sci Eng. A, Vol. 265 (1999), p.188.

Google Scholar

[6] M. Furukawa, A. Utsunomiya, K. Matsubara, Z. Horita and T. G. Langdon: Acta Mater. Vol. 49 (2001), p.3829.

Google Scholar

[7] M. Ferry, N. E. Hamilton and F. J. Humphreys: Acta Mater. Vol. 53 (2005), p.1097.

Google Scholar

[8] K. Neshi, Z. Horita and T. G. Langdon: Mater. Sci. Eng. Vol. A (2003), p.129.

Google Scholar

[9] V. Sklenička, J. Dvořák, P. Král, M. Svoboda and I. Saxl: Int. J. Mater. Res. Vol. 100 (2009), p.762.

Google Scholar

[10] J. Dvořák, V. Sklenička, P. Král, M. Svoboda and I. Saxl: Rev. Adv. Mater. Sci. Vol. 25 (2010), p.225.

Google Scholar

[11] V. Sklenička, P. Král, J. Dvořák, et al.: Effect of Equal-Channel Angular Pressing on the Creep Resistence of Precipitation-Strengthened Alloys, paper of SPD5 conference.

DOI: 10.4028/www.scientific.net/msf.667-669.897

Google Scholar

[12] M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto and T. G. Langdon: Mater. Sci. Eng. Vol. A 257 (1998), p.328.

Google Scholar

[13] X. Molodova , G. Gottstein, M. Winning, R.J. Hellmig: Mater. Sci. Eng. A 460–461 (2007), p.204.

Google Scholar

[14] V. Sklenička: Mater. Sci. Eng. Vol. A 234 (1997), p.30.

Google Scholar