Study of the Microstructure of AZ31B Magnesium Alloy under High Strain Rate Deformation

Article Preview

Abstract:

In order to investigate the microstructure evolution under high strain rate deformation of magnesium alloy, AZ31B magnesium alloy was impacted by Split Hopkinson Pressure Bar within the strain rates of 496s-1 to 2120s-1, then the specimens were observed by optical microscopy. The results show that when the strain rate are relatively low (496s-1-964s-1), the microstructure is predominated by high density of twinning, while increase the strain rate to 2120s-1 the volume fraction of twins is decreased. This implies that at relatively lower strain rate the deformation mechanism of AZ31B magnesium alloy under impact loading is twinning; increasing the strain rate the prismatic slip and pyramidal slip may be active besides twinning.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

325-331

Citation:

Online since:

June 2011

Export:

Price:

[1] P. Cizek, M.R. Barnett: Scripta Mater. Vol. 59(2008), p.959.

Google Scholar

[2] A.G. Beer, M.R. Barnett: Mater. Sci. Eng., A Vol. 485(2008), p.318.

Google Scholar

[3] A.G. Beer, M.R. Barnett: Mater. Sci. Eng., A Vol. 423(2006), p.292.

Google Scholar

[4] M.R. Barnett, M.D. Nave, C.J. Bettlesk: Mater. Sci. Eng., A Vol. 386(2004), p.205.

Google Scholar

[5] E. B Konopleva, H. J McQueen: Scripta Mater. Vol. 37(1997), p.1789.

Google Scholar

[6] G. M. Owolabi, A. G. Odeshi, M. N. K Singh, M. N. Bassim: Mater. Sci. Eng. A Vol. 457(2007), p.14.

Google Scholar

[7] R. C. Batra, B. M. Love: Int. J. Plast Vol. 22(2006), p.1858.

Google Scholar

[8] V.F. Nesterenko, M.A. Meyers, J.C. LaSalvia, M.P. Bondar: Mater. Sci. Eng. A Vol. 229(1997), p.23.

Google Scholar

[9] Y.B. Xu, W.L. Zhong, Y.J. Chen, Q. Liu, Y.L. Bai, M.A. Meyers: Mater. Sci. Eng., A Vol. 299(2001) , p.287.

Google Scholar

[10] C.O. Mgbokwere, S.R. Nutt, J. Duffy: Mech. Mater. Vol. 17(1994), p.97.

Google Scholar

[11] X.L. Wu, C.W. Tan: Rare Metal Mater. Eng. Vol. 37(2008), p.1111.

Google Scholar

[12] C.H. Liu: Study on Dynamic Mechanical Properties of AZ31 Alloy[D]. Jinzhou: Liaoning Technical University, 2003: 42.

Google Scholar

[13] G. Robert, M. F. Matthias, G. Gunter: Mater. Sci. Eng., A Vol. 395(2005), p.338.

Google Scholar

[14] Y.B. Yang, F.C. Wang, C.W. Tan, Y.Y. Wu, H.N. Cai: Trans. Nonferrous Met. Soc. China Vol. 18(2008), p.1043.

Google Scholar

[15] M.R. Barnett, Z. Keshavarz, A.G. Beer, D. Atwell: Acta Mater. Vol. 52(2004), p.5093.

Google Scholar

[16] S.M. Fatemi-Varzaneh, A. Zarei-Hanzak, M. Haghshenas: Mater. Sci. Eng., A Vol. 497(2008), p.438.

Google Scholar

[17] M.R. Barnett: Mater. Sci. Eng., A Vol. 464(2007), p.1.

Google Scholar

[18] M.R. Barnett: Mater. Sci. Eng., A Vol. 464(2007), p.8.

Google Scholar

[19] L. Jiang, J.J. Jonas, R.K. Mishra, A. Luo, A.K. Sachdev, S. Godet: Acta Mater. Vol. 55(2007), p.3899.

Google Scholar

[20] L. Jiang, J.J. Jonas, R.K. Mishra, A. Luo, A.K. Sachdev, S. Godet: Mater. Sci. Eng., A Vol. 445-446(2007), p.302.

Google Scholar