Binary Ni-Ta Bulk Metallic Glasses Designed by Using a Cluster-Plus-Glue-Atom Model

Article Preview

Abstract:

With the aid of the atomic-cluster-plus-glue-atom model (ACPGA model) proposed by Dong et al [1] for bulk metallic glasses (BMGs), the formation and characteristic of Ni-Ta binary BMGs were investigated in this work. Binary glass-forming compositions containing 56.3–62.5 at.%-Ni were obtained by a composition formula [M-Ni6Ta6]Ni3 based on the ACPGA model. It was found that Ni-Ta BMGs with a diameter of 2 mm was obtained over a composition range of 59 ~ 62 at.%-Ni by copper mold casting method, which are in good agreement with our model prediction. Newly-developed Ni–Ta BMGs are a kind of extreme materials, which exhibit superior thermal stability (Tg = 993K) and a ultrahigh fracture strength of about 3.5 GPa.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

395-399

Citation:

Online since:

June 2011

Export:

Price:

[1] C. Dong, Q. Wang, J. B. Qiang, Y. M. Wang, J. Wu, Y. H. Li, W. Chen, and X. Cheng, J. Phys. D Appl. Phys. 49, R273 (2007).

Google Scholar

[2] A. L. Greer, Science 267, 1947 (1995).

Google Scholar

[3] A. Inoue, Acta Mater. 48, 279 (2000).

Google Scholar

[4] W. L. Johnson, MRS Bull. 24, 42 (1999).

Google Scholar

[5] W. H. Wang, C. Dong, and C.H. Shek, Mater. Sci. Eng. R44, 45 (2004).

Google Scholar

[6] D. Wang, Y. Li, B. B. Sun, M. L. Sui, K. Lu, and E. Ma, Appl. Phys. Lett. 84, 4029 (2004).

Google Scholar

[7] D. H. Xu, B. Lohwongwatana, G. Duan, W. L. Johnson, and C. Garland, Acta Mater. 52, 2621 (2004).

Google Scholar

[8] A. Inoue and W. Zhang, Mater. Trans. 45, 584 (2004).

Google Scholar

[9] M. B. Tang, D. Q. Zhao, M. X. Pan, W. H. Wang, Chin. Phys. Lett. 21, 901 (2004).

Google Scholar

[10] G. Duan, D. H. Xu, and W. L. Johnson, Metall. Mater. Trans. A 36 A, 455 (2005).

Google Scholar

[11] L. Xia, W. H. Li, S. S. Fang, B. C. Wei, and Y. D. Dong, J. Appl. Phys. 99, 026103 (2006).

Google Scholar

[12] M. Leonhardt, W. Löser, and H. –G. Lindenkreuz, Acta Mater. 47, 2961 (1999).

Google Scholar

[13] R. B. Schwarz, and W. L. Johnson, Phys. Rev. Lett. 51, 415 (1983).

Google Scholar

[14] T. B. Massalski, in: Proc. of 4th Int. Conf. on Rapidly Quenched Metals, eds. T. Masumoto and K. Suzukui, Sendai, Japan, vol. 1, 203, (1981).

Google Scholar

[15] G. Kreuch, and J. Hafner, J. Non-Cryst. Solids 189, 227 (1995).

Google Scholar

[16] L. Yuan, C. Pang, Y. M. Wang, Q. Wang, J. B. Qiang, and C. Dong, Intermetallics 18, 1800 (1995).

Google Scholar

[17] H. S. Chen, Acta Mater. 24, 153 (1976).

Google Scholar

[18] R. C. Ruhl, B. C. Giessen, M. Cohen, and N. J. Grant, Acta Metall. 15, 1693 (1967).

Google Scholar

[19] B. C. Giessen, M. Madhava, and D. E. Pork, Mater. Sci. Eng. 23, 145 (1976).

Google Scholar