Liquid Atomic Structure and Viscosity of Al-Si Alloys with and without Sr

Article Preview

Abstract:

The liquid structure of Al-Si hypoeutectic binary alloys with and without the addition of 0.04 wt.% Sr was characterized by diffraction experiments using a high energy X-Ray (Synchrotron) beam source. The diffraction data for all the alloys were obtained at various melt temperatures. Reverse Monte Carlo (RMC) analysis was carried out using the diffraction experimental data to quantify the partial pair distribution function (PPDF). Further, the partial pair distribution function and the liquid atomic structure information were used in a semi empirical model to evaluate the viscosity of these liquid alloys at various temperatures.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

222-225

Citation:

Online since:

June 2011

Export:

Price:

[1] A. Hellawell: Prog. Mater. Sci. Vol. 15 (1970), p.3

Google Scholar

[2] S. Shankar, Y.W. Riddle and M.M. Makhlouf: Acta Mater. Vol. 52 (2004), p.4447

Google Scholar

[3] M.M. Makhlouf and H.V. Guthy: J. Light Metals Vol. 1 (2001), p.199

Google Scholar

[4] G. Sigworth: Int. J. Metalcasting Vol. 2 (2008), p.19

Google Scholar

[5] J. Campbell, G. Sigworth and J. Jorstad: Int. J. Metalcasting Vol. 3 (2009), p.65

Google Scholar

[6] N. Tonmukayakul, M.M. Makhlouf and S. Shankar: Int. J. Metalcasting Vol. 3 (2009), p.7

Google Scholar

[7] K. Nogita, S.D. McDonald and A.K. Dahle: Phil. Mag. Vol. 84 (2004), p.1683

Google Scholar

[8] S. Shankar, M.M. Makhlouf and Y.W. Riddle: AFS Trans. Vol. 113 (2005), p.145

Google Scholar

[9] A.T. Dinsdale and P.N. Quested: J. Mater. Sci. Vol. 39 (2004), p.7221

Google Scholar

[10] X. Song, X. Bian, J. Zhang and J. Zhang: J. Alloys Comp. Vol. 479 (2009), p.670

Google Scholar

[11] M. Born and H.S. Green: Proc. R. Soc. A Vol. 190 (1947), p.455

Google Scholar

[12] M. Kitajima, M. Shimoji and K.Saito: Trans. Japan Inst. Metals Vol. 17 (1976), p.582

Google Scholar

[13] G.M. Bhuiyan, I. Ali and S.M.M. Rahman: Physica B Vol. 334 (2003), p.147

Google Scholar

[14] G. Kresse: J.Non Cryst.Solids Vol. 312-314 (2002), p.52

Google Scholar

[15] P. Tangney and S. Scandolo: J. Chem. Phys. Vol. 117 (2002), p.8898

Google Scholar

[16] T. Iida and R.I.L. Guthrie: The Physical Properties of Liquid Metals (Clarendon Press, 1988)

Google Scholar

[17] R. Bansal: J. Phys. C Vol. 6 (1973), p.3071

Google Scholar

[18] T.E. Faber: Introduction to the theory of liquid metals (University Press, 1972)

Google Scholar

[19] E.Nd.C. Andrade: Phil. Mag. Vol. 17 (1934), p.698

Google Scholar

[20] B. Djemili, L. Martin-Garin, R. Martin-Garin and P. Hicter: J. Phys. Colloques Vol. 41 (1980), p. C8-363

DOI: 10.1051/jphyscol:1980891

Google Scholar

[21] S. Shankar, P. Srirangam, M. Jeyakumar, M. Walker, M. Hamed and M.J. Kramer: TMS 2009 Annual Meeting & Exhibition (2009), p.173

Google Scholar

[22] R.L. McGreevy and L. Pusztai: Mol. Simul. Vol. 1 (1988), p.359

Google Scholar

[23] R.L. McGreevy: J. Phys. Condens. Matter Vol. 3 (1991), p. F9

Google Scholar

[24] R.L. McGreevy and P. Zetterstrom: J. Non-Cryst. Solids Vol. 293-295 (2001), p.297

Google Scholar

[25] H.W. Sheng, W.K. Luo, F.M. Alamgir, J.M. Bai and E. Ma: Nature Vol. 439 (2006), p.419

Google Scholar

[26] P. Srirangam, M.J. Kramer and S. Shankar: Acta Mater. Vol. 59 (2011), p.503

Google Scholar

[27] M.M. Malik, M. Jeyakumar, M.S. Hamed, M.J. Walker and S. Shankar: J.Non Newtonian Fluid Mech. Vol. 165 (2010), p.733

Google Scholar