Predicting Internal Oxidation: Building on the Wagner Model

Article Preview

Abstract:

Wagner’s 1959 diffusion model of the internal oxidation process provided a method of predicting the rate at which a binary alloy was penetrated by dissolved oxygen as it precipitated the more reactive (but dilute) alloy component. Parabolic kinetics were predicted to depend on oxygen permeability in the unreacted alloy solvent and also, in cases where the reactive component was sufficiently mobile, the diffusion coefficient of the latter. The model has proven very successful, but is restricted to single oxidant-binary alloy systems, in which the precipitated oxide has extremely low solubility. This paper reviews recent results on a number of internal precipitation processes which cannot be described with the Wagner theory. These include formation of low stability carbides and nitrades; internal precipitation driven by multiple oxidants; the templating effects of prior precipitates on subsequently formed corrosion products; cellular precipitation morphologies; internal interface diffusion effects; volume changes in the reaction zone and the effects upon them of simultaneous external scaling.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-11

Citation:

Online since:

September 2011

Authors:

Export:

Price:

[1] R.C. John, in: Corrosion 96, NACE, Houston, TX (1996), p.171.

Google Scholar

[2] D.J. Young: High Temperature Oxidation and Corrosion of Metals, Elsevier (2008).

Google Scholar

[3] C. Wagner: Z. Elektrochem., 63 (1959) p.772.

Google Scholar

[4] R.A. Rapp: Corrosion 21 (1965), p.382.

Google Scholar

[5] R.A. Rapp: Acta Met., 0 (1961), p.730.

Google Scholar

[6] J.W. Park and C. Altstetter: Met. Trans. A, 18A (1987), p.43.

Google Scholar

[7] H.J. Grabke and E.M. Peterson: Scripta Met., 12 (1978), p.1111.

Google Scholar

[8] H.A. Wriedt and O.D. Gongalez: Trans. AIME, 221 (1961) 532.

Google Scholar

[9] S.K. Bose and H.J. Grabke: Z. Metallk., 69 (1978), p.8.

Google Scholar

[10] T. Wada, H. Wada, J.F. Elliott and J. Chipman: Met. Trans., 2 (1971), p.2199.

Google Scholar

[11] J.H. Swisher and E.T. Turkdogan: Trans. AIME, 239 (1967), p.426.

Google Scholar

[12] A. Schnaas and H.J. Grabke: Oxid. Met., 12 (1978), p.387.

Google Scholar

[13] G.M. Smith, D.J. Young and D.L. Triumm: Oxid. Met, 18 (1982), p.229.

Google Scholar

[14] D.J. Young: Carburisation and Metal Dusting, in Shreir's Corrosion, eds. R. Cottis, R. Lindsay, S. Lyon, D.J.D. Scantlebury, F.H. Stott, M.J. Graham, Elsevier, Amsterdam (2009).

Google Scholar

[15] S. Ford: PhD Thesis, University of New South Wales (2005).

Google Scholar

[16] J.S. Kirkaldy: Canad. Met. Q. 9 (1969), p.35.

Google Scholar

[17] E.K. Ohriner and J.F. Morral: Scripta Met., 13 (1979), p.7.

Google Scholar

[18] D.J. Young and O. Ahmed: Mater. Sci. Forum, 269-372 (2001), p.93.

Google Scholar

[19] M. Udyavar and D.J. Young: Corros. Sci., 42 (2000), p.861.

Google Scholar

[20] S. Ford, P.R. Munroe and D.J. Young, in: John Stringer Symposium eds. P.T. Tortorelli, I.G. Wright and P.Y. Hou, ASM International, Materials Park, OH (2003), p.77.

Google Scholar

[21] H.J. Christ: Mater. Corros., 49 (1998), p.258.

Google Scholar

[22] S. Ford, P.R. Munroe, D. McGrouther and P.R. Munroe: Mater. High Temp., 22 (2005), p.351.

Google Scholar

[23] V.I. Mozchan: Izv. Chem. Metall., 8 (1979), p.92.

Google Scholar

[24] O. Ahmed, and D.J. Young in: High Temperature Corrosion and Materials Chemistry II, eds. M.J. McNallan, E.J. Opila, T. Maruyama and T. Narita, The Electrochemical Society, Inc., Pennington NJ (2000), p.77.

Google Scholar

[25] D. Turnbull: Acta Met., 3 (1955), p.55.

Google Scholar

[26] S.I. Ford, P.R. Munroe and D.J. Young: Mater. High Temp., 17 (2000), p.279.

Google Scholar

[27] H. Hindam and D. P. Whittle: J. Mater. Sci., 18 (1983), p.1389.

Google Scholar

[28] M.A.A. Motin, J. Zhang, P.R. Munroe and D.J. Young: Corros. Sci., 52 (2010), p.3280.

Google Scholar

[29] J. Megasur and G.H. Meier: Met. Trans. A, 7A (1976), p.1133.

Google Scholar

[30] F.H. Stott, G.C. Wood, D.P. Whittle, B.D. Bastow, Y. Shida and A. Martinez-Villafone: Solid State Ionics, 12 (1984), p.365.

DOI: 10.1016/0167-2738(84)90166-8

Google Scholar

[31] M.A.A. Motin, J. Zhang and D.J. Young: J. Electrochem. Soc, 157 (2010), p.325.

Google Scholar

[32] J.L. Meijering in: Advances in Materials Research, edited by H. Herman, Wiley-Interscience, New York (1971), p.1.

Google Scholar

[33] C. Spengler and J. Viswanathan: Met. Trans., 3 (1972), p.161.

Google Scholar

[34] J.A. Colwell and R.A. Rapp: Met. Trans. A, 17A (1986), p.1065.

Google Scholar

[35] D.J. Young and S. Watson: Oxid. Met., 44 (1995), p.239.

Google Scholar

[36] M. Hänsel, C.A. Boddington and D.J. Young: Corros., Sci., 45 (2003), p.967.

Google Scholar

[37] W. Betteridge: The Nimonic Alloys, E. Arnold, London (1959).

Google Scholar

[38] L.S. Darken: Trans. AIME, 54 (1961), p.600.

Google Scholar

[39] H.C. Yi, S.W. Guan, W.W. Smeltzer and A. Petric: Acta Met. Mat., 42 (1994), p.981.

Google Scholar

[40] Y. Shida, F.H. Stott, B.D. Bastow, D.P. Whittle and G.C. Wood: Oxid. Met., 18 (1982), p.93.

Google Scholar

[41] N. Belen, P. Tomascewicz, and D.J. Young: Oxid. Met., 22 (1984), p.227.

Google Scholar

[42] H.C. Yi, S. -Q. Shi, W.W. Smeltzer and A. Petrix: Oxid. Met., 43 (1995), p.115.

Google Scholar

[43] D. Oquab, N. Xu, D. Monceau and D. J. Young: Corros. Sci., 52 (2010), p.255.

Google Scholar