Epitaxial Growth of α-Fe2O3 Thin Films on c-Plane Sapphire Substrate by Hydrothermal Method

Article Preview

Abstract:

Thin films of hematite find extensive applications in photoelectrochemistry, photocatalysis, and gas sensors. c-axis oriented hematite films have been directly grown on c-plane sapphire substrate using chemical method via hydrolysis of ferric cations. X-ray diffraction (XRD) reveals that the crystalline phases of the films and corresponding sediment produced in the solution were α-Fe2O3 and pure β-FeOOH, demonstrating the promotion of nucleation of hematite on sapphire substrate as a result of lowered interface energy. Phi-scan results indicate that the hematite films are grown with (0001) planes parallel to c-plane of Al2O3. Scanning electron microscopic observation shows that the hematite films are composed of pyramid-shaped nanocrystals with smooth surface facets.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 702-703)

Pages:

999-1002

Citation:

Online since:

December 2011

Export:

Price:

[1] F. Le Formal, M. Grätzel, K. Sivula, Controlling Photoactivity in Ultrathin Hematite Films for Solar Water-Splitting, Adv. Funct. Mater. 20 (2010) 1099-1107.

DOI: 10.1002/adfm.200902060

Google Scholar

[2] S. Zeng, K. Tang, T. Li, Z. Liang, D. Wang, Y. Wang, Y. Qi, W. Zhou, Facile Route for the Fabrication of Porous Hematite Nanoflowers: Its Synthesis, Growth Mechanism, Application in the Lithium Ion Battery, and Magnetic and Photocatalytic Properties, J. Phys. Chem. C 112 (2008).

DOI: 10.1021/jp0768773

Google Scholar

[3] Y. Wang, Y. Wang, J. Cao, F. Kong, H. Xia, J. Zhang, B. Zhu, S. Wang, S. Wu, Low-temperature H2S sensors based on Ag-doped α-Fe2O3 nanoparticles, Sens. Actuators B: Chem. 131 (2008) 183-189.

DOI: 10.1016/j.snb.2007.11.002

Google Scholar

[4] L. Vayssieres, Aqueous Chemical Route to Ferromagnetic 3-D Arrays of Iron Nanorods, Nano Lett. 2 (2002) 1393-1395.

DOI: 10.1021/nl025840l

Google Scholar

[5] C. -J. Jia, L. -D. Sun, Z. -G. Yan, L. -P. You, F. Luo, X. -D. Han, Y. -C. Pang, Z. Zhang, C. -H. Yan, Single-crystalline iron oxide nanotubes, Angew. Chem. Int. Ed. 44 (2005) 4328-4333.

DOI: 10.1002/anie.200463038

Google Scholar

[6] S. Li, Y. Zhang, C. Esling, J. Muller, J. -S. Lecomte, G.W. Qin, X. Zhao, L. Zuo, Determination of surface crystallography of faceted nanoparticles using transmission electron microscopy imaging and diffraction modes, J. Appl. Cryst. 42 (2009).

DOI: 10.1107/s0021889809013107

Google Scholar

[7] X. Li, X. Yu, J. He, Z. Xu, Controllable Fabrication, Growth Mechanisms, and Photocatalytic Properties of Hematite Hollow Spindles, J. Phys. Chem. C 113 (2009) 2837-2845.

DOI: 10.1021/jp8079217

Google Scholar

[8] C.H. Kim, H.J. Chun, D.S. Kim, S.Y. Kim, J. Park, J.Y. Moon, G. Lee, J. Yoon, Y. Jo, M. -H. Jung, S.I. Jung, C.J. Lee, Magnetic anisotropy of vertically aligned α-Fe2O3nanowire array, Appl. Phys. Lett. 89 (2006) 223103.

DOI: 10.1063/1.2393165

Google Scholar

[9] F.L. Souza, K.P. Lopes, P. a P. Nascente, E.R. Leite, Nanostructured hematite thin films produced by spin-coating deposition solution: Application in water splitting, Solar Energy Mater. Solar Cells 93 (2009) 362-368.

DOI: 10.1016/j.solmat.2008.11.049

Google Scholar

[10] Z. Pu, M. Cao, J. Yang, K. Huang, C. Hu, Controlled synthesis and growth mechanism of hematite nanorhombohedra, nanorods and nanocubes, Nanotechnology 17 (2006) 799-804.

DOI: 10.1088/0957-4484/17/3/031

Google Scholar

[11] A.G. Joly, G. Xiong, C. Wang, D.E. McCready, K.M. Beck, W.P. Hess, Synthesis and photoexcited charge carrier dynamics of β-FeOOH nanorods, Appl. Phys. Lett. 90 (2007) 103504.

DOI: 10.1063/1.2711395

Google Scholar

[12] M. Cao, T. Liu, S. Gao, G. Sun, X. Wu, C. Hu, Z.L. Wang, Single-crystal dendritic micro-pines of magnetic α-Fe2O3: large-scale synthesis, formation mechanism, and properties, Angew. Chem. Int. Ed. 44 (2005) 4197-4201.

DOI: 10.1002/anie.200500448

Google Scholar

[13] L. Vayssieres, N. Beermann, S. -eric Lindquist, A. Hagfeldt, Controlled Aqueous Chemical Growth of Oriented Three-Dimensional Crystalline Nanorod Arrays: Application to Iron(III) Oxides, Chem. Mater. 13 (2001) 233-235.

DOI: 10.1021/cm001202x

Google Scholar

[14] L. Vayssieres, C. Sathe, S.M. Butorin, D.K. Shuh, J. Nordgren, J. Guo, One-Dimensional Quantum-Confinement Effect in α-Fe2O3 Ultrafine Nanorod Arrays, Adv. Mater. 17 (2005) 2320-2323.

DOI: 10.1002/adma.200500992

Google Scholar

[15] S. Li, G.W. Qin, Y. Zhang, W. Pei, L. Zuo, C. Esling, Anisotropic Growth of Iron Oxyhydroxide Nanorods and their Photocatalytic Activity, Adv. Eng. Mater. 12 (2010) 1082-1085.

DOI: 10.1002/adem.201000081

Google Scholar

[16] P. Pant, J.D. Budai, J. Narayan, Nonpolar ZnO film growth and mechanism for anisotropic in-plane strain relaxation, Acta Mater. 58 (2010) 1097-1103.

DOI: 10.1016/j.actamat.2009.10.026

Google Scholar