Corrosion Behavior and Surface Analysis of Melt-Spun Mg-Based Metallic Glass in Physiological Saline Solution

Article Preview

Abstract:

The developed Mg-based metallic glass shows great potential as implants in biomedical applications instead of crystalline Mg alloys, which may possesses acceptable corrosion properties. In this study, corrosion behaviors of melt-spun amorphous Mg67Zn28Ca5 ribbons were investigated in physiological saline solution. Electrochemical testing and hydrogen evolution rate indicated that the glassy ribbons obtained at lower wheel speed were more noble with smaller corrosion current, and possessed a comparatively lower corrosion rate in physiological saline solution. Surface morphology analysis revealed that glassy Mg67Zn28Ca5 ribbons exhibited a strong susceptibility to localized pitting corrosion. A Zn-rich passive layer was formed on the surfaces of the glassy ribbons, indicating that Zn was an effective alloying element to enhance the corrosion resistance of amorphous Mg67Zn28Ca5 alloys.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 706-709)

Pages:

606-611

Citation:

Online since:

January 2012

Export:

Price:

[1] H. Hermawan, D. Dube, D. Mantovani, Development in metallic biodegradable stents, Acta Biomater. 6 (2010) 1693-1697.

DOI: 10.1016/j.actbio.2009.10.006

Google Scholar

[2] M. Peuster, P. Beerbaum, F.W. Bach, H. Hauser, Are resorbable implants about to become a reality? Cardiol. Young. 16 (2006) 107-116.

DOI: 10.1017/s1047951106000011

Google Scholar

[3] B. Zberg, P.J. Uggowitzer, J.F. Loffler. MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants, Nat. Mater. 8 (2009) 887-891.

DOI: 10.1038/nmat2542

Google Scholar

[4] M.P. Staiger, A.M. Pietak, J. Huadmai, G. Dias, Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials, 27 (2006) 1728-1734.

DOI: 10.1016/j.biomaterials.2005.10.003

Google Scholar

[5] L.P. Xu, G.N. Yu, E. Zhang, F. Pan, K. Yang. In vivo corrosion behavior of Mg-Mn-Zn alloy for bone implant application. J. Biomed. Mater. Res. 83A (2007) 703-711.

DOI: 10.1002/jbm.a.31273

Google Scholar

[6] R. Erbel et al., Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial. Lancet, 369 (2007) 1869-75.

DOI: 10.1016/s0140-6736(07)60853-8

Google Scholar

[7] G.L. Song. Control of biodegradation of biocompatible magnesium alloys. Corros. Sci. 49 (2007) 1696-1701.

Google Scholar

[8] W.H. Jiang, F. Jiang, B.A. Green, F.X. Liu, P.K. Liaw, H. Choo, K.Q. Qiu. Electrochemical corrosion behavior of a Zr-based bulk-metallic glass, Appl. Phys. Lett. 91 (2007) 041904.

DOI: 10.1063/1.2762282

Google Scholar

[9] Y.B. Wang, H.F. Li, Y. Cheng, S.C. Wei, Y.F. Zheng. Corrosion performances of a nickel-free Fe-based bulk metallic glass in simulated body fluids. Electrochem. Commun. 11 (2009) 2187-2190.

DOI: 10.1016/j.elecom.2009.09.027

Google Scholar

[10] X.N. Gu, Y.F. Zheng, S.P. Zhong, T.F. Xi, J.Q. Wang, W.H. Wang. Corrosion of, and cellular responses to Mg-Zn-Ca bulk metallic glasses. Biomaterials, 31 (2010) 1093-1103.

DOI: 10.1016/j.biomaterials.2009.11.015

Google Scholar

[11] F.X. Qin, G.T. Bae, Z.H. Dan, H. Lee, N.J. Kim. Corrosion behavior of the Mg65Cu25Gd10 bulk amorphous alloys. Mat. Sci. Eng. A, 449-451 (2007) 636-639.

DOI: 10.1016/j.msea.2006.02.387

Google Scholar

[12] H.B. Yao, Y. Li, A.T.S. Wee. Corrosion behavior of melt-spun Mg65Ni20Nd15 and Mg65Cu25Y10 metallic glasses. Electrochim. Acta, 48 (2003) 2641-2650.

DOI: 10.1016/s0013-4686(03)00310-4

Google Scholar

[13] B.D. Ratner, A.S. Hoffman, F.J. Schoen, J.E. Lemons. Biomaterials Science: an Introducitn to Materials in Medicine. Elsevier Academic Press, San Diego, California, (2004).

Google Scholar

[14] J.W. Chang, X.W. Guo, P.H. Fu, L.M. Peng, W.J. Ding. Effect of heat treatment on corrosion and electrochemical behavior of Mg-3Nd-0. 2Zn-0. 4Zr (wt%) alloy. Electrochim. Acta, 52 (2007) 3160-3167.

DOI: 10.1016/j.electacta.2006.09.069

Google Scholar

[15] H. Habazaki, S.Q. Ding, A. Kawashima, K. Asami, K. Hashimoto, A. Inoue, T. Masumoto. The anodic behavior of amorphous Ni-19P alloys in different amorphous states. Corros. Sci, 29 (1989) 1319-1328.

DOI: 10.1016/0010-938x(89)90122-4

Google Scholar

[16] F.F. Marzo, A.R. Pierna, M.M. Vega. Effect of irreversible structural relaxation on the electrochemical behavior of Fe78-xSi13B9Cr(x=3, 4, 7) amorphous alloys. J. Non-cryst. Solids, 329 (2003) 108-114.

DOI: 10.1016/j.jnoncrysol.2003.08.022

Google Scholar

[17] Y. Song, D. Shan, R. Chen, F. Zhang, E.H. Han. Biodegradable behaviors of AZ31 magnesium alloy in simulated body fluid. Mat Sci Eng C-Biomin, 29 (2009) 1039-1045.

DOI: 10.1016/j.msec.2008.08.026

Google Scholar

[18] G.L. Song, A. Atrens. Understanding magnesium corrosion. Adv. Eng. Mater, 5 (2003) 837-858.

Google Scholar

[19] M.L. Morrison, R.A. Buchanan, A. Peker, P.K. Liaw, J.A. Horton. Electrochemical behavior of a Ti-based bulk metallic glass. J. Non-cryst Solids, 353 (2007) 2115-2124.

DOI: 10.1016/j.jnoncrysol.2007.03.012

Google Scholar

[20] R. Schennach, T. Grady, D.G. Naugle, H. McWhinney, C.C. Hays, W.L. Johnson, D.L. Cocke. Electrochemical characterization and surface analysis of bulk amorphous alloys in aqueous solutions at different pH. J. Vac. Sci, Technol. A, 19 (2001).

DOI: 10.1116/1.1380719

Google Scholar

[21] Z.M. Wang, J. Zhang, J.Q. Wang. Pit growth in a Ni-Nb metallic glass compared with its crystalline counterpart. Intermetallics, 18 (2010) 2077-(2082).

DOI: 10.1016/j.intermet.2010.06.010

Google Scholar