Fine-Grained Structure and Superplasticity of Al – Cu – Mg – Fe - Ni Alloys

Article Preview

Abstract:

The microstructure of Al – Cu – Mg – Fe – Ni alloys with Mn and Zr additions was analyzed by optical and scanning electron microscopy, internal friction, X-ray and calorimetric analysis in order to optimize technology of superplastic alloy preparation. It is shown that the S (Al2CuMg) phase precipitates during hot rolling and dissolves during annealing. This allows to create fine-grained recrystallized structure and to achieve elongation of 320 % at the strain rate of 1×10-3 s-1 during superplasticity testing. It is shown that annealing in saltpeter before superplastic deformation improves the superplastic behavior: at the constant strain rate of 4×10-3 s-1 elongation is 500 %.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

55-60

Citation:

Online since:

December 2012

Export:

Price:

[1] T.G. Nieh, J. Wadsworth, O.D. Sherby, Superplasticity in metals and ceramics, Cambridge university Press, New York, 2005.

Google Scholar

[2] I.I. Novikov and V.K. Portnoy, Superplastizitat von Legierungen, VEB Deutscher Verlag fur Grundstoffindustrie, Leipzig, 1984.

Google Scholar

[3] Superplastic forming of structural alloys / Edited by N.E. Paton, C.H. Hamilton, The metallurgical society of AIME, (1982)

Google Scholar

[4] International Alloy Designations and Chemical Composition Limits for Wrought Aluminum and Wrought Aluminum Alloys, The Aluminum Association, Inc., (2009)

DOI: 10.31399/asm.hb.v02b.a0006624

Google Scholar

[5] C. Testani, F.M. Ielpo, E. Alunni, AA2618 and AA7075 alloys superplastic transition in isothermal hot-deformation tests, Materials and Design. 21 (2000) 305–310.

DOI: 10.1016/s0261-3069(99)00086-2

Google Scholar

[6] W. Feng, X. Baiqing, Z. Yongan, L. Zhihui, L. Peiyue, Microstructural characterization of an Al–Cu–Mg alloy containing Fe and Ni. Journal of Alloys and Compounds. 487 (2009) 445 - 449.

DOI: 10.1016/j.jallcom.2009.07.171

Google Scholar

[7] K. Yu, W. Li, S. Li, J. Zha, Mechanical properties and microstructure of aluminum alloy 2618 with Al3(Sc, Zr) phases, Materials Science and Engineering. 368 (2004) 88 - 93.

DOI: 10.1016/j.msea.2003.09.092

Google Scholar

[8] M. Warmuzekb, G. Mrуwka, J. Sieniawski, Influence of the heat treatment on the precipitation of the intermetallic phases in commercial AlMn1FeSi alloy, Materials Processing Technology. 157–158 (2004) 624–632.

DOI: 10.1016/j.jmatprotec.2004.07.125

Google Scholar

[9] A.S. Nowick, B.S. Berry. Anelastic relaxation in crystalline solids; Academic Press, New York, 1972.

Google Scholar

[10] M.S. Blanter, I.S. Golovin, H. Neuhäuser, H.-R. Sinning, Internal Friction in Metallic Materials, A Handbook, Springer, Berlin, Heidelberg, 2007.

DOI: 10.1007/978-3-540-68758-0

Google Scholar

[11] V. Subramanya Sarma, J. Wang, W.W. Jian, Role of stacking fault energy in strengthening due to cryo-deformation of FCC metals, Materials Science and Engineering. 527 (2010) 7624–7630.

DOI: 10.1016/j.msea.2010.08.015

Google Scholar

[12] T.C. Schulthess, P.E. A. Turchi, A. Gonis and T.G. Nieh, Systematic study of stacking fault energies of random Al-based alloys, Acta Mater. 46 (1998) 2215-2221.

DOI: 10.1016/s1359-6454(97)00432-1

Google Scholar

[13] W.C. Liu, Z.Li , C.-S. Man, Effect of heating rate on the microstructure and texture of continuous cast AA 3105 aluminum alloy, Materials Science and Engineering. 478 (2008) 173–180.

DOI: 10.1016/j.msea.2007.05.107

Google Scholar

[14] F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena (Second Edition), Pergamon, (2004)

DOI: 10.1016/b978-008044164-1/50003-7

Google Scholar