Syntheses of Hematite (α-Fe2O3) Nanoparticles Using Microwave-Assisted Calcination Method

Article Preview

Abstract:

Hematite (α-Fe2O3) nanoparticles were synthesized from the solution of FeCl3.6H2O and NaOH in water using microwave-assisted calcination method. The syntheses were initially carried out by microwave heating and completed by a calcination process using a simple heating method. The effect of microwave heating time, calcination temperature, and calcination time were investigated. The XRD patterns demonstrated that the obtained nanoparticles are pure hematite. Using the Scherrer method, the average crystallite sizes of hematite nanoparticles were in the range of 35.6 to 54.4 nm. The obtained hematite nanoparticles were spherical with the average particle sizes ranging from 91 to 116 nm as confirmed by the SEM images.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

197-203

Citation:

Online since:

January 2013

Export:

Price:

[1] Y. Wang, J. Cao, S. Wang, X. Guo, J. Zhang, H. Xia, S. Zhang, and S. Wu, Facile Synthesis of Porous a-Fe2O3 Nanorods and Their Application in Ethanol Sensors, J. Phys. Chem. C. 112 (2008) 17804-17808.

DOI: 10.1021/jp806430f

Google Scholar

[2] W. Yan, H. Fan, Y. Zhai, C. Yang, P. Ren, and L. Huang, Low Temperature Solution-Based Synthesis of Porous Flower-Like a-Fe2O3 Superstructures and Their Excellent Gas-Sensing Properties, Sensors and Actuators B. 160 (2011) 1372-1379.

DOI: 10.1016/j.snb.2011.09.080

Google Scholar

[3] G. Qiu, H. Huang, H. Genuino, N. Opembe, L. Stafford, S. Dharmarathna, and S. L. Suib, Microwave-Assisted Hydrothermal Synthesis of Nanosized a-Fe2O3 for Catalyst and Adsorbents, J. Phys. Chem. C. 115 (2011) 19626-19631.

DOI: 10.1021/jp2067217

Google Scholar

[4] K. Sivula, F. L. Formal, and M. Gratzel, Solar Water Splitting: Progress Using Hematite (a-Fe2O3) Photoelectrodes, ChemSusChem 4 (2011) 432-449.

DOI: 10.1002/cssc.201000416

Google Scholar

[5] S. A. Ntim and S. Mitra, Removal of Trace Arsenic to Meet Drinking Water Standards Using Iron Oxide Coated Multiwall Carbon Nanotubes, J. Chem. Eng. Data 56 (2011) 2077-2083.

DOI: 10.1021/je1010664

Google Scholar

[6] H. Zhang, W. Wang, H. Li, S. Meng, and D. Li, A Strategy to Prepare Ultrafine Dispersed Fe2O3 Nanoparticles, Materials Letters 62 (2008) 1230-1233.

DOI: 10.1016/j.matlet.2007.08.026

Google Scholar

[7] J. A. Gerbec, D. Magana, A. Washington, and G. F. Strouse, Microwave-Enhanced Reaction Rates for Nanoparticle Synthesis, J. Am. Chem. Soc. 127 (2005) 15791-15800.

DOI: 10.1021/ja052463g

Google Scholar

[8] J. Zhu, O. Palchik, S. Chen, and A. Gedanken, Microwave Assisted Preparation of CdSe, PbSe, and Cu2-xSe Nanoparticles, J. Phys. Chem. B 104 (2000) 7344-7347.

DOI: 10.1002/chin.200102243

Google Scholar

[9] G. Qiu, H. Huang, H. Genuino, N. Opembe, L. Stafford, S. Dharmarathna, and S. L. Suib, Microwave-Assisted Hydrothermal Synthesis of Nanosized a-Fe2O3 for Catalyst and Adsorbents, J. Phys. Chem. C. 115 (2011) 19626-19631.

DOI: 10.1021/jp2067217

Google Scholar

[10] L. Hu, A. Percheron, D. Chaumont, H. Brachais, Microwave-assisted One-Step Hydrothermal Synthesis of Pure Iron Oxide Nanoparticles: Magnetite, Maghemtite, and Hematite, J. Sol-Gel Sci Technol 60 (2011) 198-205.

DOI: 10.1007/s10971-011-2579-4

Google Scholar

[11] Z. Jing, D. Han, and S. Wu, Morphological Evolution of Hematite Nanoparticles with and without Surfactant by Hydrothermal Method, Materials Letters 99 (2005) 804-807.

DOI: 10.1016/j.matlet.2004.11.025

Google Scholar

[12] X. Cao, R. Prozorov, Y. Koltypin, G. Kataby, I. Felner, and A. Gedanken, Synthesis of Pure Amorphous Fe2O3, J. Mater. Res. Vol. 12, No. 2 (1997)

DOI: 10.1557/jmr.1997.0058

Google Scholar

[13] Z. Pu, M. Cao, J. Yang, K. Huang, and C. Hu, Controlled Synthesis and Growth Mechanism of Hematite Nanorhombohedra, Nanorods, and Nanocubes, Nanotechnology 17 (2006) 799-804.

DOI: 10.1088/0957-4484/17/3/031

Google Scholar

[14] B. Gilbert, H. Zhang, F. Huang, M. P. Finnegan, G. A. Waychunas, and J. F. Banfield, Special Phase Transformation and Crystal Growth Pathways Observed in Nanoparticles, Geochem. Trans. 4 (2003) 20-27.

DOI: 10.1186/1467-4866-4-20

Google Scholar

[15] J. Lian, X. Duan, J. Ma, P. Peng, T. Kim, and W. Zheng, Hematite (a-Fe2O3) with Various Morphologies: ionic liquid-Assisted Synthesis, Formation Mechanism, and Properties, American Chemical Society 3 (2009) 3749-3761.

DOI: 10.1021/nn900941e

Google Scholar

[16] R. L. Penn and J. F. Banfield, Morphology Development and Crystal Growth in Nanocrystalline Aggregates under Hydrothermal Conditions: Insights from Titania, Geochimica et Cosmochimica Acta 63 (1999) 1549-1557.

DOI: 10.1016/s0016-7037(99)00037-x

Google Scholar

[17] S. Lian, E. Wang, Z. Kang, Y. Bai, L. Gao, M. Jiang, C. Hu, and L. Xu, Synthesis of magnetite Nanorods and Porous Hematite Nanorods, Solid State Communication 129 (2004) 485-490.

DOI: 10.1016/j.ssc.2003.11.043

Google Scholar