Texture Evolution of a Cold-Rolled Fe-28Mn-0.28C TWIP Steel during Recrystallization

Article Preview

Abstract:

Texture evolution during static primary recrystallization of an austenitic Fe-28Mn-0.28C TWIP steel was analyzed. The cold-rolled material, which showed a Brass-type texture at medium (30% and 50%), and additionally a γ-fiber at high (80%) deformation degrees, was subjected to isothermal annealing at 700°C. The influence of rolling degree/starting texture on the development of particular texture components was studied. After recrystallization a weakened, retained rolling texture was observed for the examined reduction levels. In addition to the deformation components, Brass and Goss, further α-fiber components were formed mainly by annealing twinning leading to the development of this fiber.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

213-216

Citation:

Online since:

March 2013

Export:

Price:

[1] O. Bouaziz, S. Allain, C. P. Scott, P. Cugy and D. Barbier: Curr. Opin. Solid State Mater. Sci. Vol. 15 (2011), p.141.

Google Scholar

[2] B. C. De Cooman, O. Kwon and K. G. Chin: Mater. Sci. Technol. Vol. 28 (2012), p.513.

Google Scholar

[3] C. Haase, S. G. Chowdhury, L. A. Barrales-Mora, D. A. Molodov and G. Gottstein: Metall. Mater. Trans. A Vol. (2012).

DOI: 10.1007/s11661-012-1543-4

Google Scholar

[4] Y. Lü, D. A. Molodov and G. Gottstein: ISIJ Int. Vol. 51 (5) (2011), p.812.

Google Scholar

[5] Y. Lü, B. Hutchinson, D. A. Molodov and G. Gottstein: Acta Mater. Vol. 58 (2010), p.3079.

Google Scholar

[6] Y. Lü, D. A. Molodov and G. Gottstein: Acta Mater. Vol. 59 (2011), p.3229.

Google Scholar

[7] L. A. Barrales-Mora, Y. Lü and D. A. Molodov: Steel Res. Int. Vol. 82 (2) (2011), p.119.

Google Scholar

[8] Y. Lü, D. A. Molodov and G. Gottstein: Mater. Sci. Forum Vol. 715-716 (2012), p.568.

Google Scholar

[9] Y. Lü, D. A. Molodov and G. Gottstein: Mater. Sci. Forum Vol. 702-703 (2012), p.443.

Google Scholar

[10] L. A. Barrales-Mora, Y. Lü, D. A. Molodov and G. Gottstein: Mater. Sci. Forum Vol. 715-716 (2012), p.849.

DOI: 10.4028/www.scientific.net/msf.715-716.849

Google Scholar

[11] A. Saeed-Akbari, L. Mosecker, A. Schwedt and W. Bleck: Metall. Mater. Trans. A Vol. 43 (5) (2011), p.1688.

Google Scholar

[12] J. F. Savoie, Doctoral Thesis, RWTH Aachen University, Germany, 1990.

Google Scholar

[13] S. G. Chowdhury, S. Datta, B. Ravi Kumar, P. K. De and R. N. Ghosh: Mater. Sci. Eng. A Vol. 443 (2007), p.114.

Google Scholar

[14] A. A. Saleh, E. V. Pereloma and A. A. Gazder: Sci. Eng. A Vol. 528 (2011), p.4537.

Google Scholar

[15] G. Gottstein: Acta Mater. Vol. 32 (7) (1984), p.1117.

Google Scholar

[16] L. Bracke, K. Verbeken and L. A. I. Kestens: Scripta Mater. Vol. 66 (2912), p.1007.

Google Scholar

[17] U. Schmidt and K. Lücke: Texture Cryst. Solids Vol. 3 (1979), p.85.

Google Scholar

[18] C. Donadille, R. Valle, P. Dervin and R. Penelle: Acta Metall. Vol. 37 (6) (1989), p.1547.

Google Scholar

[19] L. Bracke, K. Verbeken, L. A. I. Kestens and J. Penning: Acta Mater. Vol. 57 (2009), p.1512.

Google Scholar

[20] F. J. Humphreys and M. Hatherley: Recrystallization and Related Annealing Phenomena, second edition, Elsevier Ltd., Amsterdam, 2004.

Google Scholar