Epoxidized Natural Rubber-Organomodified Montmorillonite Nanohybrids; Interaction and Thermal Decomposition

Article Preview

Abstract:

Nanohybrids, based on a modified natural rubber,Epoxidized Natural Rubber (ENR-50), and organomodified montmorillonite (MMT) containing alkyl ammonium, were prepared by solvent casting technique. Morphology and non-isothermal degradation of ENR-50 and various ENR/MMT nanohybrids were characterized by POM, SEM and TG-DTG. In the hybrid materials,an increase MMT loading in the ENR-50 increased the maximum decomposition temperature (Tmax) of thermal profiles. Kissinger and Ozawa plots deduced a trend of the decomposition activation energy, Ed, which is related to the agglomeration and heat transfer ability of MMT. A mechanism comprising of the degradation of ENR-50 via scission of epoxy-isoprene chains to shorter chains, ring opening reaction and the possible interactions of modified nanoclay and ENR-50 is discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

119-126

Citation:

Online since:

May 2013

Export:

Price:

[1] Z. Wang, T. Lan, T.J. Pinnavaia, Hybrid Organic−Inorganic Nanocomposites Formed from an Epoxy Polymer and a Layered Silicic Acid (Magadiite), Chemistry of Materials. 8 (1996) 2200–2204.

DOI: 10.1021/cm960263l

Google Scholar

[2] Q. Liu, Y. Zhang, H. Xu, Properties of vulcanized rubber nanocomposites filled with nanokaolin and precipitated silica, Applied Clay Science. 42 (2008) 232–237.

DOI: 10.1016/j.clay.2007.12.005

Google Scholar

[3] S. Varghese, J. Karger-Kocsis, Layered Silicate/Rubber Nanocomposites via Latex and Solution Intercalations, in: F. Klaus, S. Fakirov, Z. Zhong (Eds.), Polymer Composites From Nano- to Macro-Scale, part 1, Springer, 2005: p.77–90.

DOI: 10.1007/0-387-26213-x_5

Google Scholar

[4] Q.H. Zeng, D.Z. Wang, B. Yu, G.Q. Lu, Synthesis of polymer montmorillonite nanocomposites by in situ intercalative polymerization, Nanotechnology. 13 (2002) 549–553.

DOI: 10.1088/0957-4484/13/5/301

Google Scholar

[5] Z. Wang, T.J. Pinnavaia, Hybrid Organic−Inorganic Nanocomposites:  Exfoliation of Magadiite Nanolayers in an Elastomeric Epoxy Polymer, Chemistry of Materials. 10 (1998) 1820–1826.

DOI: 10.1021/cm970784o

Google Scholar

[6] C. Nah, H.J. Ryu, S.H. Han, J.M. Rhee, M.-H. Lee, Fracture behaviour of acrylonitrile-butadiene rubber/clay nanocomposite, Polymer International. 50 (2001) 1265–1268.

DOI: 10.1002/pi.809

Google Scholar

[7] R.H. Bennett, M. Hulbert, Clay Microstructure, 1st ed., International Human Resources Development Corp, 1986.

Google Scholar

[8] M. Lopez-Manchado, B. Herrero, M. Arroyo, Preparation and characterization of organoclay nanocomposites based on natural rubber, Polymer International. 52 (2003) 1070–1077.

DOI: 10.1002/pi.1161

Google Scholar

[9] S.R. Davis, A.R. Brough, A. Atkinson, Formation of silica / epoxy hybrid network polymers, Journal of Non-Crystalline Solids. 315 (2003) 197–205.

DOI: 10.1016/s0022-3093(02)01431-x

Google Scholar

[10] A.K. Manna, D.K. Tripathy, P.P. De, S.K. De, M.K. Chatterjee, D.G. Peiffer, Bonding between epoxidized natural rubber and clay in presence of silane coupling agent, Journal of Applied Polymer Science. 72 (1999) 1895–1903.

DOI: 10.1002/(sici)1097-4628(19990628)72:14<1895::aid-app10>3.0.co;2-2

Google Scholar

[11] Q. Yuan, S. Awate, R. Misra, Nonisothermal crystallization behavior of polypropylene–clay nanocomposites, European Polymer Journal. 42 (2006) 1994–2003.

DOI: 10.1016/j.eurpolymj.2006.03.012

Google Scholar

[12] S.Y. Yeo, W.L. Tan, M. Abu Bakar, J. Ismail, Silver sulfide/poly(3-hydroxybutyrate) nanocomposites: Thermal stability and kinetic analysis of thermal degradation, Polymer Degradation and Stability. 95 (2010) 1299–1304.

DOI: 10.1016/j.polymdegradstab.2010.02.025

Google Scholar

[13] M. Arroyo, M. Lopezmanchado, J. Valentin, J. Carretero, Morphology/behaviour relationship of nanocomposites based on natural rubber/epoxidized natural rubber blends, Composites Science and Technology. 67 (2007) 1330–1339.

DOI: 10.1016/j.compscitech.2006.09.019

Google Scholar

[14] Y.T. Vu, J.E. Mark, L.H. Pham, M. Engelhardt, Clay nanolayer reinforcement ofcis-1,4-polyisoprene and epoxidized natural rubber, Journal of Applied Polymer Science. 82 (2001) 1391–1403.

DOI: 10.1002/app.1976

Google Scholar

[15] A. Botana, M. Mollo, P. Eisenberg, R.M. Torres Sanchez, Effect of modified montmorillonite on biodegradable PHB nanocomposites, Applied Clay Science. 47 (2010) 263–270.

DOI: 10.1016/j.clay.2009.11.001

Google Scholar

[16] J.M. Cervantes-Uc, J. V. Cauich-Rodríguez, H. Vázquez-Torres, L.F. Garfias-Mesías, D.R. Paul, Thermal degradation of commercially available organoclays studied by TGA–FTIR, Thermochimica Acta. 457 (2007) 92–102.

DOI: 10.1016/j.tca.2007.03.008

Google Scholar