Study of Mechanical Properties of an LM24 Composite Alloy Reinforced with Cu-CNT Nanofillers, Processed Using Ultrasonic Cavitation

Article Preview

Abstract:

This study investigates the effect of Cu-Carbon Nanotube (Cu-CNT´s) composite powders on the mechanical properties of an Al-Si9.5-Cu4-Fe1.3 wt.% (LM24) aluminium matrix composite (AMC). Carbon nanotubes (CNT’s) can exhibit exceptional mechanical properties, e.g. stiffness up to 1000 GPa and strength in the order of 100 GPa. In recent years there has been significant scientific interest in improving properties in conventional alloys, via fabricating CNT metal matrix composites in order to attempt to harness their extraordinary attributes. In this study mechanically alloyed Cu-CNTS powders were added to molten LM24. The melt was processed using ultrasonic cavitation and subsequently high pressure die casting to form as-cast tensile specimens. SEM results indicate that CNT’s can be successfully introduced into the melt using this method. Compared to the unreinforced alloy, the CNT additions resulted in an increment (~20±10 MPa) to both ultimate tensile strength and yield strength, with a corresponding decline (~1±0.5l %) in elongation. This observed increase in strengthening may be attributed to the CNT’s pinning and hindering both grain boundary and dislocation migration during applied loading. Interestingly, no significant difference in properties were found with an increase in the CNT content (from 0.05 to 0.1 wt.%) potentially indicating a saturation limit.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

245-249

Citation:

Online since:

July 2013

Export:

Price:

[1] R. Bacon, Growth, Structure, and Properties of Graphite Whiskers, J. Appl. Phys. 31 (1960) 283-290.

Google Scholar

[2] S. Iijima, Helical Microtubules of Graphitic Carbon, Nature 354 (1991) 56-58.

DOI: 10.1038/354056a0

Google Scholar

[3] S.R. Bakshi, D. Lahiri, A. Agarwal, Carbon Nanotube Reinforced Metal Matrix Composites – A Review, Int. Mater. Rev. 55 (2010).

Google Scholar

[4] M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson, Nature 381 (1996) 678–680.

Google Scholar

[5] A. Krishnan, E. Dujardin, T.W. Ebbesen, P.N. Yianilos, M.M.J. Treacy, Phys. Rev. B 58 (1998) 14013-14019.

DOI: 10.1103/physrevb.58.14013

Google Scholar

[6] E.W. Wong, P.E. Sheehan, C.M. Lieber, Science 277 (1997) 1971-1974.

Google Scholar

[7] M.F. Yu, B.S. Files, S. Arepalli, R.S. Ruoff, Phys. Rev. Letts. 84 (2000) 5552-5555.

Google Scholar

[8] E. Neubauer, M. Kitzmantel, M. Hulman, P. Angerer, Potential and challenges of metal-matrix-composites reinforced with carbon nanofibers and carbon nanotubes, Composites Sci. Technol. 70 (2010) 2228-2236.

DOI: 10.1016/j.compscitech.2010.09.003

Google Scholar

[9] S. Donthamsetty, N.R. Damera, P.K. Jain, Ultrasonic Cavitation Assisted Fabrication and Characterization of A356 Metal Matrix Nanocomposite Reinforced with SiC, B4C, CNTs, AIJSTPME 2 (2009) 27-34.

Google Scholar

[10] N. Barekar, S. Tzamtzis, B.K. Dhindaw, J. Patel, N. Hari Babu, Z. Fan, Processsing of Al-Graphite Particulate Metal Matrix Composites by Advanced Shear Technology, J. Eng. and Perform. (2009).

DOI: 10.1007/s11665-009-9362-5

Google Scholar

[11] P.K. Rohatgi, B. Schultz, Lightweight Metal Matrix Nanocomposites, Stretching the Boundaries of Metals, Material Matters 2.4 (2007) 16.

Google Scholar

[12] A.M.K. Esawi, K. Morsi, A. Sayed, M. Taher, S. Lanka, Effect of Carbon Nanotube (CNT) Content on the Mechanical Properties of CNT-Reinforced Aluminium Composites, Composites Sci. Technol. 70 (2010) 2237-2241

DOI: 10.1016/j.compscitech.2010.05.004

Google Scholar

[13] F. Wang, S. Arai , M. Endo, The Preparation of Multi-Walled Carbon Nanotubes with Ni-P Coating by an Electroless Deposition Process, Carbon 43 (2005) 1716-1721.

DOI: 10.1016/j.carbon.2005.02.015

Google Scholar

[14] K.C. Chin, A. Gohel , W.Z. Chen, H.I Elim, W. Ji, G.L Chong, et al. Gold and silver decorated carbon nanotubes: an improved broad-band optical limiter, Chem. Phys. Letts. 409 (2005) 85-8.

DOI: 10.1016/j.cplett.2005.04.092

Google Scholar

[15] F.Z. Kong, X.B. Zhang, W.Q Xiong, F. Liu , W.Z. Huang , Y.L Sun, J.P Tu, Y.W. Chen, Surf. Coat. Technol. 105 (2002) 33-36.

Google Scholar

[16] Y. Yang, X. Li, Ultrasonic Cavitation Based Nanomanufacturing of Bulk Aluminum Matrix Nanocomposites, J. Manuf. Sci. Eng. 129 (2007) 497-501.

DOI: 10.1115/1.2714583

Google Scholar

[17] G. Cao, H. Choi, H. Konishi, S. Kou, R. Lakes, X. Li, Mg–6Zn/1.5%SiC nanocomposites fabricated by ultrasonic cavitation-based solidification processing, J. Mater. Sci. 43 (2008) 5521-5526.

DOI: 10.1007/s10853-008-2785-9

Google Scholar

[18] Information on: http://www.alumasc-precision.co.uk/AlloyLM24.php

Google Scholar