Hole-Drilling Method for Residual Stress Measurement - Consideration of Elastic-Plastic Material Properties

Article Preview

Abstract:

Two commonly used mechanical methods for the determination of residual stresses are the hole-drilling method and the ring-core method, which can be regarded as semi-destructive. The most restricting limitation for the general applicability of both methods, according to the current state of science and technology, is the fact that the scope for relatively low residual stress under 60% of the yield stress is limited.This is a result of the notch effect of the hole or ring core, which leads to a plastification around and on the bottom of the hole and ring shaped groove already at stresses well below the yield stress of the material. The elastic evaluation of the resulting plastic strains leads consequently to an overestimation of the delineated residual stresses. In this paper the influence of elastic-plastic material properties no the specific calibration function for the hole-drilling method using the differential method is studied, and the method of adaptive calibration functions is presented.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 768-769)

Pages:

174-181

Citation:

Online since:

September 2013

Export:

Price:

[1] Gibmeier, J.; Nobre, J.; Scholtes, B.: Residual stress determination by the hole drilling method in the case of highly stress surface layers; Material science research international 10 (2004) 21-25.

DOI: 10.2472/jsms.53.3appendix_21

Google Scholar

[2] Gibmeier, J.; Kornmeier, M.; Scholtes, B.: Plastic deformation during application of the hole-drilling method; Materials Science Forum Vols. 347-349 (2000) 131-136.

DOI: 10.4028/www.scientific.net/msf.347-349.131

Google Scholar

[3] Issler, L.; Ruoß, H.; Häfele, P.: Festigkeitslehre; Springer-Verlag; 2. Auflage (1997).

Google Scholar

[4] Kockelmann, H.: Mechanical methods of determining residual stresses; Deutsche Gesellschaft für Materialkunde (DGM) Informationsgesellschaft Verlag (1991) 37-52.

Google Scholar

[5] Kockelmann, H.; Schwarz, T.: Quantifizierung der teilzerstörenden Eigenspannungs-messverfahren (Bohrloch- und Ringkernverfahren) für anisotrope Werkstoffe und Mehrachsigkeit des Spannungszustandes; Abschlussbericht des DFG-Forschungsvorhabens Ko 89614-1; MPA Stuttgart (1991).

Google Scholar

[6] Nau, A.; Scholtes, B.: Evaluation of the High-Speed Drilling Technique for Incremental Hole-Drilling Method; Society for Experimental Mechanics (2012).

DOI: 10.1007/s11340-012-9641-1

Google Scholar

[7] Schwarz, T.: Beitrag zur Eigenspannungsermittlung an isotropen, anisotropen sowie inhomogenen, schichtweise aufgebauten Werkstoffen mittels der Bohrlochmethode und des (?) Ringkernverfahrens; Dissertation Universität Stuttgart (1996).

Google Scholar

[8] Sobolevski, E.; Scholtes, B.: Residual stress analysis of components real geometries using the incremental hole-drilling technique and a differential evaluation method; Dissertation Universität Kassel (2007).

Google Scholar

[9] Tietz, H-D.: Grundlagen der Eigenspannungen; VEB Deutscher Verlag für Grundstoffindustrie; Leipzig (DDR) (1982).

DOI: 10.1002/crat.2170200236

Google Scholar

[10] Wolf, H.; Böhm, W.: Das Ring-Kern-Verfahren zur Messung von Eigenspannungen und seine Anwendungen bei Turbinen und Generatorwellen; Mitteilung aus der Turbinenversuchs-abteilung der Kraftwerk Union AG, Mülheim/Ruhr; Arch. Eisenhüttenwe. 42 Heft 3 (1971).

DOI: 10.1002/srin.197102583

Google Scholar