A Method to Estimate Interfacial Energy between Eutectic Solid Phases from the Results of Eutectic Solidification Experiments

Article Preview

Abstract:

In solidification experiments of binary eutectic alloys, the eutectic spacing and undercooling are measured as function of the solidification rate. A new theoretical relationship is derived herewith between the Gibbs-Thomson coefficient and the above mentioned values for both lamellar and rod type eutectics. This new equation allows the estimation of the interfacial energy between eutectic solid phases. For the Sn/Pb eutectics the value of about 0.15 N/m is found in this paper using experimental literature data on eutectic solidification experiments. This is consistent with an earlier value obtained by a more complex experimental method of Gündüz and Hunt.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 790-791)

Pages:

133-139

Citation:

Online since:

May 2014

Authors:

Export:

Price:

* - Corresponding Author

[1] M. Gündüz, J. D. Hunt: The measurement of solid - liquid surface energies in the Al-Cu, Al-Si and Pb-Sn systems - Acta Metallurgica, 1985, vol. 33, pp.1651-1672.

DOI: 10.1016/0001-6160(85)90161-0

Google Scholar

[2] E. Öztürk, S. Aksöz, K. Keslioglu, N. Marasli. The measurement of interfacial energies for solid Sn solution in equilibrium with the Sn–Bi–Ag liquid, Mater Chem Phys, 2013, vol. 139, pp.153-160.

DOI: 10.1016/j.matchemphys.2013.01.011

Google Scholar

[3] Ü. Bayram, S. Aksöz, N. Marasli N. Solid–liquid interfacial energy of solid aminomethylpropanediol solution in equilibrium with aminomethylpropanediol–neopentylglycol–D camphor liquid. Thermochim Acta, 2013, vol. 554, pp.48-53.

DOI: 10.1016/j.tca.2012.12.013

Google Scholar

[4] W. Kurz, D.J. Fisher. Fundamentals of Solidification. Trans Tech Publ, Switzerland, (1986).

Google Scholar

[5] D.A. Porter, K.E. Easterling, M.Y. Sherif. Phase Transformation in Metals and Alloys, 3rd edition, CRC Press, NY, (1993).

Google Scholar

[6] D.M. Stefanescu. Science and Engineering of Casting Solidification. Kluwer Acad., NY, (2002).

Google Scholar

[7] J.A. Dantzig, M. Rappaz. Solidification. EPFL Press, Lausanne, (2009).

Google Scholar

[8] G. Kaptay. Nano-Calphad: extension of the Calphad method to systems with nano-phases and complexions. J Mater Sci, 2012, vol. 47, pp.8320-8335.

DOI: 10.1007/s10853-012-6772-9

Google Scholar

[9] J.P. Chilton, W.C. Winegard. Solidification of a eutectic made from zone-refined lead and tin. J Inst Metals, 1961, vol. 89, pp.162-178.

Google Scholar

[10] J.D. Hunt, J.P. Chilton. An investigation of lamella-rod transition in binary eutectics. J Inst Metals, 1963, vol. 92, pp.21-34.

Google Scholar

[11] F.R. Mollard, M.C. Flemings. Growth of composites from melt. Trans AIME, 1967, vol. 239, pp.1534-1546.

Google Scholar

[12] J.D. Livingston, H.E. Cline. Monotectic solidification of Cu-Pb alloys. Trans AIME, 1969, vol. 245, p.1987-(1996).

Google Scholar

[13] J.N. Clark, R. Elliott. Interlamellar spacing measurements in the Sn-Pb and Al-CuAl2 Eutectic Systems. Metall Trans, 1976, vol. 7A, pp.1197-1202.

DOI: 10.1007/bf02656603

Google Scholar

[14] R. Trivedi, J.T. Manson, J.D. Verhoeven, W. Kurz. Eutectic spacing selection in lead-based alloy systems. Metall Trans, 1991, vol. 22A, pp.2523-2533.

DOI: 10.1007/bf02665018

Google Scholar

[15] P. Magnin, R. Trivedi. Eutectic growth: A modification of the Jackson and Hunt theory. Acta metal mater, 1991, vol. 39, pp.453-467.

DOI: 10.1016/0956-7151(91)90114-g

Google Scholar

[16] W. Zhang, H. Fu, Y. Yang, Z. Hu. A numerical model for spacing selection of lamellar eutectics grown from flowing liquids. J Cryst Growth, 1998, vol. 194, pp.263-271.

DOI: 10.1016/s0022-0248(98)00481-3

Google Scholar

[17] E. Cadirli, M. Gündüz. The directional solidification of Pb-Sn alloys J Mater Sci, 2000, vol. 35, pp.3837-3848.

Google Scholar

[18] E. Cadirli, H. Kaya, M. Gündüz. Directional solidification and characterization of the Cd–Sn eutectic alloy. J Alloys Compds 431 (2007) 171-179.

DOI: 10.1016/j.jallcom.2006.05.073

Google Scholar

[19] R.M. Jordan, J.D. Hunt. Interface undercoolings during the growth of Pb-Sn eutectics. Metall Trans 3 (1972) 1385-1390.

DOI: 10.1007/bf02643021

Google Scholar

[20] T.B. Massalski. Binary Alloy Phase Diagrams. ASM Int, (1990).

Google Scholar

[21] J. Emsley. The Elements. Clarendon Press, Oxford, (1989).

Google Scholar

[22] Y.S. Touloukian, R.K. Kirby, R.E. Taylor, T.Y.R. Lee. Thermal Expansion, IFI, NY, (1977).

Google Scholar

[23] W.B. Pearson. A handbook of lattice spacings. Pergamon Press, London, (1958).

Google Scholar

[24] A.T. Dinsdale: SGTE data for pure elements. CALPHAD, 1991, vol. 15, pp.317-425.

DOI: 10.1016/0364-5916(91)90030-n

Google Scholar

[25] H. Ohtani, K. Okuda, K. Ishida. Thermodynamic study of phase equilibria in the Pb-Sn-Sb system. J Phase Equil 16 (1995) 416-429.

DOI: 10.1007/bf02645349

Google Scholar