The Role of Vacancies in the Aging of Al-Mg-Si Alloys

Article Preview

Abstract:

In this paper the role of vacancies in the aging of Al-Mg-Si alloys is examined and novel concepts to improve their aging behavior are presented. It has been proposed that the technologically favored fast nucleation of the major hardening phase during artificial aging requires quenched-in vacancy assisted diffusion. The well-known interdependence of natural aging and subsequent artificial in Al-Mg-Si alloys can be understood in terms of quenched-in vacancy trapping in Mg/Si-clusters formed during natural aging. Diffusion during artificial aging is then determined by the dissolution of these vacancy-containing Mg/Si-clusters. This simple concept can guide the development of strategies to avoid the negative effect of natural aging. It is shown that the aging behavior of Al-Mg-Si alloys can be improved not only by processing related measures, but also by compositional interventions, which apply the following recipe: (i) avoid the trapping of vacancies in Mg/Si-clusters, (ii) prevent the vacancy annihilation during RT, and (iii) make them available for diffusion during artificial aging. It is shown that this strategy can be executed in Al-Mg-Si alloys by adding defined trace amounts of elements with an attractive binding energy to vacancies and sufficient solubility in the aluminum matrix.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 794-796)

Pages:

1008-1013

Citation:

Online since:

June 2014

Export:

Price:

* - Corresponding Author

[1] A. Wilm, Physikalisch-metallurgische Untersuchungen über magnesiumhaltige Aluminiumlegierungen. Metallurgie 8 (1911) 225-227.

Google Scholar

[2] R.S. Archer, Jeffries Z. New developments in high-strenght aluminum alloys. Trans AIME 71 (1925) 828-863.

Google Scholar

[3] P. Brenner, H. Kostron, Über die Vergütung der Aluminium-Magnesium-Silizium-Legierungen (Pantal). Z Metallkd 4 (1939) 89-97.

DOI: 10.1515/ijmr-1939-310401

Google Scholar

[4] A.D. Smigelskas, E.O. Kirkendall, Zinc diffusion in alpha brass. Trans AIME 17 (1947) 130-142.

Google Scholar

[5] H.K. Hastings, A.G. Frõseth, S.J. Andersen, R. Vissers, et al., Composition of β´´ precipitates in Al-Mg-Si alloys by atom probe tomography and firts principles calculations. J Appl Phys. 106 (2009) 123527-1-9.

DOI: 10.1063/1.3269714

Google Scholar

[6] H.W. Zandbergen, S.J. Andersen, J. Jansen, Structure determination of Mg5Si6 particles in Al by dynamic electron diffraction studies. Science 227 (1997) 1221-1225.

DOI: 10.1126/science.277.5330.1221

Google Scholar

[7] J. Banhart, C.S.T. Chang, Z.Q. Liang, N. Wanderka N, et al., Natural aging in Al-Mg-Si alloys - A process of unexpected complexity. Adv Eng Mater 12 (2010) 559-571.

DOI: 10.1002/adem.201000041

Google Scholar

[8] A. Dupasquier, G. Kögel, A. Somoza. Studies of light alloys by positron annihilation techniques. Acta Mater 54 (2004) 4707-4726.

DOI: 10.1016/j.actamat.2004.07.004

Google Scholar

[9] B. Klobes, T.E.M. Staab, M. Haaks, K. Maier, et al., The role of quenched-in vacancies for the decomposition of aluminium alloys. Phys Status Solidi Rapid Res Lett. A 2 (2008) 224-226.

DOI: 10.1002/pssr.200802123

Google Scholar

[10] M. Massazza, G. Riontino, A. Dupasquier, P. Folegati P, et al., Secondary ageing in Al-Cu-Mg. Phil Mag Lett 82 (2002) 495-502.

DOI: 10.1080/09500830210153896

Google Scholar

[11] H. Seyedrezai, D. Grebennikov, P. Mascher, H.S. Zurob. Study of the early stages of clustering in Al-Mg-Si alloys using the electrical resistivity measurements. Mater Sci Eng A-Struct 525 (2009) 186-191.

DOI: 10.1016/j.msea.2009.06.054

Google Scholar

[12] J. Buha, T. Muramatsu, R.N. Lumley, A.G. Crosky, et al., Positron studies of precipitation in 6061 aluminium alloy. Materials Forum 28 (2004) 1028-1033.

Google Scholar

[13] H.S. Zurob, H. Seyedrezai, A model for the growth of solute clusters based on vacancy trapping. Scripta Mater 61 (2009) 141-144.

DOI: 10.1016/j.scriptamat.2009.03.025

Google Scholar

[14] M.D.H. Lay, H.S. Zurob, C.R. Hutchinson, T.J. Bastow, et al., Vacancy behavior and solute cluster growth during natural aging of an Al-Mg-Si alloy. Metall Trans A (2012) 1-7.

DOI: 10.1007/s11661-012-1257-7

Google Scholar

[15] C. Panseri, F.G. Gatto, T. Federighi, Interaction between solute magnesium atoms and vacancies in aluminium. Acta Metall Mater 6 (1958) 198-204.

DOI: 10.1016/0001-6160(58)90008-7

Google Scholar

[16] M. Mantina, Y. Wang, L.Q. Chen, Z.K. Liu, et al., First principles impurity diffusion coefficients. Acta Mater 57 (2009) 4102-4108.

DOI: 10.1016/j.actamat.2009.05.006

Google Scholar

[17] S. Pogatscher, H. Antrekowitsch, H. Leitner, T. Ebner, et al., Mechanisms controlling the artificial aging of Al-Mg-Si Alloys. Acta Mater 59 (2011) 3352-3363.

Google Scholar

[18] S. Pogatscher, H. Antrekowitsch, H. Leitner, D. Pöschmann, et al., Influence of interrupted quenching on artificial aging of Al-Mg-Si alloys. Acta Mater 60 (2012) 4496-4505.

DOI: 10.1016/j.actamat.2012.04.026

Google Scholar

[19] M. Murayama, K. Hono, Pre-Precipitate clusters and precipitation processes in Al-Mg-Si alloys. Acta Mater 47 (1999) 1537-1548.

DOI: 10.1016/s1359-6454(99)00033-6

Google Scholar

[20] S. Esmaeili, D.J. Lloyd, Modeling of precipitation hardening in pre-aged AlMgSi(Cu) alloys. Acta Mater 53 (2005) 5257-5271.

DOI: 10.1016/j.actamat.2005.08.006

Google Scholar

[21] S. Pogatscher, H. Antrekowitsch, M. Werinos, F. Moszner, et al. Diffusion on demand to control precipitation aging: Application to Al-Mg-Si alloys. Submitted.

DOI: 10.1103/physrevlett.112.225701

Google Scholar

[22] F.D. Fischer, J. Svoboda, F. Appel, E. Kozeschnik. Modeling of excess vacancy annihilation at different types of sinks. Acta Mater 59 (2011) 3463-3472.

DOI: 10.1016/j.actamat.2011.02.020

Google Scholar

[23] Information on http: /matcalc. tuwien. ac. at.

Google Scholar

[24] M.K. Miller, A. Cerezo, M.G. Hetherington, G.D.W. Smith, Atom probe field ion microscopy. Oxford University Press. Oxford, (1996).

Google Scholar

[25] G.A. Edwards, K. Stiller, G.L. Dunlop, M.J. Couper. The precipitation sequence in Al-Mg-Si alloys. Acta Mater 46 (1998) 3893-3904.

DOI: 10.1016/s1359-6454(98)00059-7

Google Scholar

[26] C. Wolverton. Solute-vacancy binding in aluminum. Acta Mater 55 (2007) 5867-5872.

DOI: 10.1016/j.actamat.2007.06.039

Google Scholar

[27] S. Pogatscher, H. Antrekowitsch, P.J. Uggowitzer. Interdependent effect of chemical composition and thermal history on artificial aging of AA6061. Acta Mater 60 (2012) 5545-5554.

DOI: 10.1016/j.actamat.2012.06.061

Google Scholar

[28] C.D. Marioara, S.J. Andersen, H.W. Zandbergen, R. Holmestad. The influence of alloy composition on precipitates of the Al-Mg-Si system. Metall Trans A 36 (2005) 691-702.

DOI: 10.1007/s11661-005-0185-1

Google Scholar

[29] S. Pogatscher, H. Antrekowitsch, H. Leitner, A.S. Sologubenko et al., Influence of the thermal route on the peak-aged microstructures in an Al–Mg–Si aluminum alloy. Scripta Mater. 68 (2013) 158-161.

DOI: 10.1016/j.scriptamat.2012.10.006

Google Scholar