Mechanisms of Dynamic Recrystallization in Aluminum Alloys

Article Preview

Abstract:

Mechanisms of dynamic recrystallization operating at severe plastic deformation in a wide temperature range are reviewed for aluminum alloys. The main mechanism of grain refinement in all aluminum alloys is continuous dynamic recrystallization (CDRX). Temperature, deformation process and distribution of secondary phases strongly affect the CDRX mechanism. Initial formation of geometrically necessary boundaries (GNBs) and a dispersion of nanoscale particles accelerate CDRX facilitating the formation of a 3D network of low-angle boundaries (LAB) followed by their gradual transformation to high-angle boundaries (HAB). At high and intermediate temperatures, 3D networks of LABs may evolve due to rearrangement of lattice dislocations by climb, and mutual intersection of GNB, respectively. At high temperatures, in aluminum alloys containing no nanoscale dispersoids the CDRX occurs through the impingement of initial boundaries forced by deformation-induced LABs. This recrystallization process is termed as geometric dynamic recrystallization (GDRX). At low temperatures, the extensive grain refinement occurs through a continuous reaction which is distinguished from CDRX by restricted rearrangement of lattice dislocation. Introduction of large misorientation may occur through the formation of 3D networks of GNBs, only.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 794-796)

Pages:

784-789

Citation:

Online since:

June 2014

Export:

Price:

* - Corresponding Author

[1] I.J. Polmear, Light Alloys. From traditional alloys to nanocrystals. 4th ed., Butterworth- Heinemann/Elsevier, UK, (2006).

DOI: 10.1017/s000192400008670x

Google Scholar

[2] R.Z. Valiev, T.G. Langdon, Prog. Mater. Sci. 51 (2006) 881-981.

Google Scholar

[3] S. Takaki, D. Akama, N. Nakada, T. Tsuchiyama, Mater. Trans. 55 (2014) 28-34.

Google Scholar

[4] D.J. Lloyd, S.A. Court, Mater Sci Tech 19 (2003) 1349-1354.

Google Scholar

[5] I. Sabirov, M.Y. Murashkin, R.Z. Valiev, Mater. Sci. Eng. A 560 (2013) 1-24.

Google Scholar

[6] F.J. Humphreys, M. Hatherly, Recrystallization and related annealing phenomena. Oxford: Elsevier; (2005).

Google Scholar

[7] T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, J.J. Jonas, Prog. Mater. Sci. 60 (2014) 130– 207.

Google Scholar

[8] R. Kaibyshev, K. Shipilova, F. Musin, Y. Motohashi, Mater. Sci. Eng. A 396 (2005) 341-351.

Google Scholar

[9] R. Kaibyshev, O. Sitdikov, A. Goloborodko and T. Sakai, Mater. Sci. Eng. A 344 (2003) 348-356.

Google Scholar

[10] R.O. Kaibyshev, I.A. Mazurina, D.A. Gromov, Met. Sci. HeatTreat. 48 (2006) 14-18.

Google Scholar

[11] I. Mazurina, T. Sakai, H. Miura, O. Sitdikov, R. Kaibyshev, Mater. Sci. Eng. A 473 (2008) 297-305.

Google Scholar

[12] O. Sitdikov, T. Sakai, E. Avtokratova, R. Kaibyshev, K. Tsuzaki, Y. Watanabe, Acta Mater. 56 (2008) 821–834.

DOI: 10.1016/j.actamat.2007.10.029

Google Scholar

[13] I. Mazurina, T. Sakai, H. Miura, O. Sitdikov, R. Kaibyshev, Mater. Sci. Eng. A 486 (2008) 662-671.

Google Scholar

[14] I. Mazurina, T. Sakai, H. Miura, O. Sitdikov, R. Kaibyshev, Mater. Trans. 50 (2009) 101-110.

DOI: 10.2320/matertrans.md200807

Google Scholar

[15] D.A. Hughes, N. Hansen, D.J. Bammann, Scr. Mater 48 (2003) 147-153.

Google Scholar

[16] W. Pantleon Acta Mater. 46 (1998) 451-456.

Google Scholar

[17] F. Musin, A. Belyakov, R. Kaibyshev, Y. Motohashi, G. Itoh and K. Tsuzaki, Rev. Adv. Mater. Sci. 25 (2010) 107-112.

Google Scholar

[18] O. Sitdikov, T. Sakai, E. Avtokratova, R. Kaibyshev, Y. Kimura, K. Tsuzaki, Mater. Sci. Eng. A 444 (2007) 18–30.

Google Scholar

[19] R. Kaibyshev, O. Sitdikov, I. Mazurina, D.R. Lesuer, Mater. Sci. Eng. A 334 (2002) 104 – 113.

Google Scholar

[20] G. Winther, X. Huang, A. Godfrey, N. Hansen, Acta Mater 52 (2004) 4437-4446.

Google Scholar

[21] Y. Huang, J.D. Robson, P.B. Prangnell, Acta Mater 58 (2010) 1643-1657.

Google Scholar

[22] P.J. Apps, M. Berta, P.B. Prangnell, Acta Mater 53 (2005) 499-511.

Google Scholar

[23] O. Sh. Sitdikov, R.O. Kaybyshev, I.M. Safarov, I.A. Mazurina, Phys. Metal. Metall. 92 (2001) 270-280.

Google Scholar