Effect of Ti Element on Microstructure and Properties of Cu-Cr Alloy

Article Preview

Abstract:

The Cu-Cr and Cu-Cr-Ti alloy plates were prepared by vacuum melting and plastic deformation. The effect of slight Ti element on microstructure and mechanical properties of Cu-Cr alloy was discussed. The result shows that Cr particles with spherical shape precipitated from Cu matrix after aging. Plenty Ti atoms dissolved in the vicinity of Cr particles and there were still parts of solid solution Ti atoms in other regions. Improvements in peak hardness and softening resistance were achieved with the addition of Ti element in Cu-Cr alloy. The addition of 0.1 wt.% Ti element makes Cu-Cr alloy possess tensile strength of 565 MPa and hardness of 185.9 HV after aging at 450 °C for 120 min, which can be attributed to multiple strengthening mechanisms, i.e. work hardening, solid solution strengthening and precipitation strengthening.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

307-311

Citation:

Online since:

April 2015

Export:

Price:

[1] C.D. Xia, W. Zhang, Z.Y. Kang, Y.L. Jia, Y.F. Wu, R. Zhang, G.Y. Xu, M.P. Wang, Mater. Sci. Eng. A 538 (2012) 295-301.

Google Scholar

[2] Q.J. Wang, Z.Z. Du, L. Luo, W. Wang, J. Alloys Compd. 526 (2012) 39-44.

Google Scholar

[3] H. Feng, H.C. Jiang, D.S. Yan, L.J. Rong, Mater. Sci. Eng. A 582 (2013) 219-224.

Google Scholar

[4] K.X. Wei, W. Wei, F. Wang, Q.B. Du, I.V. Alexandrov, J. Hu, Mater. Sci. Eng. A 528 (2011) 1478-1484.

Google Scholar

[5] W.X. He, E. Wang, L.X. Hu, Y. Yu, H.F. Sun, J. Mater. Process. Technol. 208 (2008) 205-210.

Google Scholar

[6] Z.P. Que, J.H. Lee, H.M. Jung, J.H. Shin, S.Z. Han, K.J. Euh, J. Cryst. Growth 362 (2013) 58-61.

Google Scholar

[7] Z.Q. Wang, Y.B. Zhong, X.J. Rao, C. Wang, J. Wang, Z.G. Zhang, W.L. Ren, Z.M. Ren, T. Nonferr. Metal Soc. 22 (2012) 1106-1111.

Google Scholar

[8] Y. Pang, C. Xia, M. Wang, Z. Li, Z. Xiao, H. Wei, X. Sheng, Y. Jia, C. Chen, J. Alloys Compd. 582 (2014) 786-792.

Google Scholar

[9] J.H. Su, P. Liu, Q.M. Dong, H.J. Li, F.Z. Ren, J. Mater. Process. Technol. 205 (2008) 366-369.

Google Scholar

[10] Y.H. Wang, X.P. Song, Z.B. Sun, X. Zhou, J. Guo, T. Nonferr. Metal Soc. 17 (2007) 72-76.

Google Scholar

[11] A. Nagesha, P. Parameswaran, A. Biswas, R. Sandhya, A.K. Asraff, M.D. Mathew, Mater. Sci. Eng. A 582 (2013) 91-95.

Google Scholar

[12] L. Qu, E.G. Wang, K. Han, X.W. Zuo, L. Zhang, P. Jia, J.C. He, J. Appl. Phys. 113 (2013) 173708.

Google Scholar