Synthesis, Characterization and Optical Properties of CdxZn1-xS Nanocrystals

Article Preview

Abstract:

Nanocrystalline Cd1-XZnXS (X=0.0, 0.2, 0.4, 0.5, 0.6, 0.8 and 1.0) were synthesized by simple wet chemical method via co-precipitation. The formation, phase purity and crystalline size were ascertained by X-ray diffraction (XRD). The shape and surface morphology of the synthesized samples were characterized by scanning electron microscopy (SEM). The optical properties of the Cd1-XZnXS samples were investigated using UV-vis absorption spectroscopy and photoluminescence spectroscopy (PL) studies. The optical properties of the sample was dramatically changed by varying the composition of Cd1-XZnXS system, which may be due to the synergic effect originated by combining CdS and ZnS. The obtained optical behaviors suggest that the material can be suitable for the photocatalytic degradation of organic pollutants. The prsent investigation demontrated that the synthetic approach developed in this is highly reproducible and can be readily scaled up for potential industrial production.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

158-167

Citation:

Online since:

November 2015

Export:

Price:

* - Corresponding Author

[1] T. Inakhunbi Chanu, Devendra P.S. Negi, Synthesis of histidine-stabilized cadmium sulfide quantum dots: Study of their fluorescence behaviour in the presence of adenine and guanine, Chem. Phys. Lett. 491 (2010) 75–79.

DOI: 10.1016/j.cplett.2010.03.068

Google Scholar

[2] Y. Zou, D. Li, D. Yang, Noninjection synthesis of CdS and alloyed CdSxSe1-x nanocrystals without nucleation initiators, Nanoscale Res. Lett. 5 (2010) 966–971.

DOI: 10.1007/s11671-010-9593-2

Google Scholar

[3] A.S.Z. Lahewil, Y. Al-Douri, U. Hashim, N.M. Ahmed, Structural and optical investigations of cadmium sulfide nanostructures for optoelectronic applications, Solar Energy 86 (2012) 3234-3240.

DOI: 10.1016/j.solener.2012.08.013

Google Scholar

[4] S.R. Forrest, M.E. Thompson, Introduction:  Organic Electronics and Optoelectronics, Chem. Rev. 107 (2007) 923–925.

DOI: 10.1021/cr0501590

Google Scholar

[5] C.H. Lai, M.Y. Lu, L.J. Chen, Metal sulfide nanostructures: synthesis, properties and applications in energy conversion and storage, J. Mater. Chem. 22 (2012) 19-30.

DOI: 10.1039/c1jm13879k

Google Scholar

[6] G. Larramona, C. Choné, A. Jacob, D. Sakakura, B. Delatouche, D. Péré, X. Cieren, M. Nagino, R. Bayón, Nanostructured photovoltaic cell of the type titanium dioxide, cadmium sulfide thin coating, and copper thiocyanate showing high quantum efficiency, Chem. Mater. 18 (2006).

DOI: 10.1021/cm052819n

Google Scholar

[7] T. Shiragami, S. Fukami, Y. Wada, S. Yanagida, Semiconductor photocatalysis: effect of light intensity on nanoscale cadmium sulfide-catalyzed photolysis of organic substrates, J. Phys. Chem. 97 (1993) 12882–12887.

DOI: 10.1021/j100151a041

Google Scholar

[8] M. Matsumura, Y. Saho, H. Tsubomura, Photocatalytic hydrogen production from solutions of sulfite using platinized cadmium sulfide powder, J. Phys. Chem. 87 (1983) 3807–3808.

DOI: 10.1021/j100243a005

Google Scholar

[9] S.K. Kansal, M. Singh, D. Sud, Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts, J. Hazard. Mater. 141 (2007) 581–590.

DOI: 10.1016/j.jhazmat.2006.07.035

Google Scholar

[10] W. Shangguan, A. Yoshida, Photocatalytic hydrogen evolution from water on nanocomposites incorporating cadmium sulfide into the interlayer, J. Phys. Chem. B 106 (2002) 12227–12230.

DOI: 10.1021/jp0212500

Google Scholar

[11] Allen P. Davis, C.P. Huang, The removal of substituted phenols by a photocatalytic oxidation process with cadmium sulfide, Water Res. 24 (1990) 543–550.

DOI: 10.1016/0043-1354(90)90185-9

Google Scholar

[12] Walter Z. Tang, C.P. Huang, Photocatalyzed oxidation pathways of 2, 4-dichlorophenol by CdS in basic and acidic aqueous solutions, Water Res. 29 (1995) 745–756.

DOI: 10.1016/0043-1354(94)00151-v

Google Scholar

[13] J.M. Costa-Fernández, R. Pereiro, A. Sanz-Medel, The use of luminescent quantum dots for optical sensing, TrAC, Trends Anal. Chem. 25 (2006) 207–218.

DOI: 10.1016/j.trac.2005.07.008

Google Scholar

[14] R. Thakar, Y. Chen, P.T. Snee, Efficient emission from Core/(Doped) shell nanoparticles:  applications for chemical sensing, Nano Lett., 7 (2007) 3429–3432.

DOI: 10.1021/nl0719168

Google Scholar

[15] Z. Dai, J. Zhang, J. Bao, X. Huang, X. Mo, Facile synthesis of high-quality nano-sized CdS hollow spheres and their application in electrogenerated chemiluminescence sensing, J. Mater. Chem. 17 (2007) 1087–1093.

DOI: 10.1039/b614203f

Google Scholar

[16] J. Theerthagiri, Shankar B. Dalavi, M. Manivel Raja, R.N. Panda, Magnetic properties of nanocrystalline ε-Fe3N and Co4N phases synthesized by newer precursor route, Mater. Res. Bull. 48 (2013) 4444–4448.

DOI: 10.1016/j.materresbull.2013.07.043

Google Scholar

[17] R. Bhattacharya, S Saha, Growth of CdS nanoparticles by chemical method and its characterization, Pramana-J. Phys. 71 (2008) 187-192.

DOI: 10.1007/s12043-008-0152-7

Google Scholar

[18] T. Jayaraman, S.A. Raja, A. Priya, M. Jagannathan, M. Ashokkumar, Synthesis of a visible-light active V2O5–g-C3N4 heterojunction as an efficient photocatalytic and photoelectrochemical material, New J. Chem. 39 (2015) 1367-1374.

DOI: 10.1039/c4nj01807a

Google Scholar

[19] Y. Bessekhouad, N. Chaoui, M. Trzpit, N. Ghazzal, D. Robert, J.V. Weber, UV–vis versus visible degradation of Acid Orange II in a coupled CdS/TiO2 semiconductors suspension, J. Photochem. Photobiol. A: Chemistry 183 (2006) 218–224.

DOI: 10.1016/j.jphotochem.2006.03.025

Google Scholar

[20] Y. Cui, In‐situ synthesis of C3N4/CdS composites with enhanced photocatalytic properties, Chinese J. Catal. 36 (2015) 372–379.

DOI: 10.1016/s1872-2067(14)60237-0

Google Scholar

[21] I. Concina, E. Comini, S. Kaciulis, G. Sberveglieri, Quantum dots as mediators in gas sensing: A case study of CdS sensitized WO3 sensing composites, Appl. Surf. Sci. 290 (2014) 295–300.

DOI: 10.1016/j.apsusc.2013.11.071

Google Scholar

[22] S. Panigrahi, D. Basak, Morphology driven ultraviolet photosensitivity in ZnO–CdS composite, J. Colloid Interface Sci. 364 (2011) 10–17.

DOI: 10.1016/j.jcis.2011.08.001

Google Scholar

[23] S. Kaveri, L. Thirugnanam, M. Dutta, J. Ramasamy, N. Fukata, Thiourea assisted one-pot easy synthesis of CdS/rGO composite by the wet chemical method: Structural, optical, and photocatalytic properties, Ceram. Int. 39 (2013) 9207–9214.

DOI: 10.1016/j.ceramint.2013.05.025

Google Scholar

[24] S. Liu, H. Li, L. Yan, Synthesis and photocatalytic activity of three-dimensional ZnS/CdS composites, Mater. Res. Bull. 48 (2013) 3328–3334.

DOI: 10.1016/j.materresbull.2013.05.055

Google Scholar

[25] X. Wang, W.C. Peng, X.Y. Li, Photocatalytic hydrogen generation with simultaneous organic degradation by composite CdS-ZnS nanoparticles under visible light, Int. J. Hydrogen Energy 39 (2014) 13454-13461.

DOI: 10.1016/j.ijhydene.2014.04.034

Google Scholar

[26] N. Soltani, E. Saion, W.M.M. Yunus, M. Navasery, G. Bahmanrokh, M. Erfani, M.R. Zare, E. Gharibshahi, Photocatalytic degradation of methylene blue under visible light using PVP-capped ZnS and CdS nanoparticles, Solar Energy 97 (2013) 147–154.

DOI: 10.1016/j.solener.2013.08.023

Google Scholar

[27] J. Theerthagiri, R. A. Senthil, A. Priya, J. Madhavan, R.J.V. Michael, M. Ashokkumar, Photocatalytic and photoelectrochemical studies of visible-light active α-Fe2O3–g-C3N4 nanocomposites, RSC Adv. 4 (2014) 38222–38229.

DOI: 10.1039/c4ra04266b

Google Scholar

[28] H. Zhao, W. Jia, E.P. Douglas, Synthesis and characterization of CdyZn1−yS nanoparticles in salt-induced block copolymer micelles, J. Mater. Sci. Lett. 22 (2003) 205–207.

Google Scholar

[29] Shankar B. Dalavi, J. Theerthagiri, M. Manivel Raja, R.N. Panda, Synthesis, characterization and magnetic properties of nanocrystalline FexNi80−xCo20 ternary alloys, J. Magn. Magn. Mater. 344 (2013) 30–34.

DOI: 10.1016/j.jmmm.2013.05.026

Google Scholar

[30] J. Theerthagiri, R. A. Senthil, A. Malathi, A. Selvi, J. Madhavan, R.J.V. Michael, M. Ashokkumar, Synthesis and characterization of a CuS-WO3 composite photocatayst for enhanced visible light photocatalytic activity, RSC Adv. 5 (2015).

DOI: 10.1039/c5ra06512g

Google Scholar

[31] T.I. Chanu, D.P.S. Negi, Synthesis of histidine-stabilized cadmium sulfide quantum dots: Study of their fluorescence behaviour in the presence of adenine and guanine, Chem. Phys. Lett. 491 (2010) 75–79.

DOI: 10.1016/j.cplett.2010.03.068

Google Scholar

[32] C. Wang, Y. Huang, H. Lin, Z. Xu, J. Wu, M.G. Humphrey, C. Zhang, Gold nanoclusters based dual-emission hollow TiO2 microsphere for ratiometric optical thermometry, RSC Adv. 2015, 5, 61586–61592.

DOI: 10.1039/c5ra13475g

Google Scholar

[33] M.S. Mehata, Enhancement of charge transfer and quenching of photoluminescence of capped CdS quantum dots, Sci. Rep. 5 (2015) 12056.

DOI: 10.1038/srep12056

Google Scholar

[34] K. Park, H.J. Yu, W.K. Chung, B.J. Kim, S. H. Kim, Effect of heat-treatment on CdS and CdS/ZnS nanoparticles, J. Mater. Sci. 44 (2009) 4315–4320.

DOI: 10.1007/s10853-009-3641-2

Google Scholar