Delafossite Nanoparticle as New Functional Materials: Advances in Energy, Nanomedicine and Environmental Applications

Article Preview

Abstract:

Recently, numerous delafossite oxides in nanoscale have been reported for diverse applications. The present review summarized the recent overall views of delafossite nanoparticles in diverse applications such as energy, catalysis, photocatalysis, nanomedicine, sensors, electrochemical devices and environmental concerns. Delafossite nanoparticles possess unique features such as different and wide chemical composition, large surface area, small energy gap, ability for further functionalization, possess dual-active sites with different oxidation states (A+ and M3+), and eager for doping with various species with feasibility to undergo structure modification. Thus, they provided promising application such as solar cell, photocatalysis, hydrogen production, bioactive materials, separation purposes and others. Pros, cons, current and future status were also reviewed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

28-53

Citation:

Online since:

November 2015

Export:

Price:

* - Corresponding Author

[1] M.A. Marquardt, N.A. Ashmore, D.P. Cann, Crystal chemistry and electrical properties of the delafossite structure, Thin Solid Films. 496 (2006) 146-156.

DOI: 10.1016/j.tsf.2005.08.316

Google Scholar

[2] A. Pabst, Notes on the Structure of Delafossite. Am. Mineral. 31 (1946) 539–546.

Google Scholar

[3] W.C. Sheets, E. Mugnier, A. Barnabe, T.J. Marks, K.R. Poeppelmeier, Hydrothermal Synthesis of Delafossite-Type Oxides. Chem. Mater. 18 (2006) 7–20.

DOI: 10.1021/cm051791c

Google Scholar

[4] D. Xiong, X. Zeng, W. Zhang, H. Wang, X. Zhao, W. Chen, Y.B. Cheng, Synthesis and Characterization of CuAlO2 and AgAlO2Delafossite Oxides through Low-Temperature Hydrothermal Methods, Inorg. Chem. 53 (2014) 4106-4116.

DOI: 10.1021/ic500090g

Google Scholar

[5] N. Mazumder, U. K. Ghorai, R. Roy, S. Saha, K. K. Chattopadhyay, Relaxor-like Dielectric Response of Spin Liquid CuCrO2, AIP Conference Proceedings. 1591 (2014) 1479-1481.

DOI: 10.1063/1.4873002

Google Scholar

[6] V. Saravanakannan, T. Radhakrishnan, Effect of solvent volume of CuAlO2 thin films for solar cell active layer, Surface Engineering, 2015, DOI: http: /dx. doi. org/10. 1179/1743294415Y. 0000000045.

DOI: 10.1179/1743294415y.0000000045

Google Scholar

[7] G. Chae, Jpn. J. Appl. Phys. A Modified Transparent Conducting Oxide for Flat Panel Displays Only. 40 (2001) 1282-1286.

DOI: 10.1143/jjap.40.1282

Google Scholar

[8] I. Hamberg and C. G. Granqvist, A Modified Transparent Conducting Oxide for Flat Panel Displays Only. J. Appl. Phys. 60 (1986) R123-R160.

Google Scholar

[9] A. Porch, D. V. Morgan, R. M. Perks, M. O. Jones, and P. P. Edwards, Transparent Current Spreading Layers for Optoelectronic Devices. J. Appl. Phys. 96 (2004) 4211-4218.

DOI: 10.1063/1.1786674

Google Scholar

[10] C. G. Granqvist, A. Azens, A. Hjelm, L. Kullman, G. A. Niklasson, D. Ronnow, M. Stromme Mattsson, M. Veszele, and G. Vaiva, Multiplicative ARMA models to generate hourly series of global irradiation, Sol. Energy. 63 (1998) 199-216.

DOI: 10.1016/s0038-092x(98)00074-7

Google Scholar

[11] C. Ruttanapun, Optical and electronic properties of delafossite CuBO2p-type transparent conducting oxide. J. Appl. Phys. 114 (2013) 113108-113108.

DOI: 10.1063/1.4821960

Google Scholar

[12] K.A. Vanaja, R.S. Ajimsha, A.S. Asha, M.K. Jayaraj, p-Type electrical conduction in a-AgGaO2delafossite thin films. Appl. Phys. Lett. 88 (2006)212103-212103.

DOI: 10.1063/1.2204757

Google Scholar

[13] T.V. Thu, P.D. Thanh, K. Suekuni, N.H. Hai, D. Mott, M. Koyano, S. Maenosono, Mater. Res. Bull. 46 (2011) 1819–1827.

DOI: 10.1016/j.materresbull.2011.07.047

Google Scholar

[14] C.K. Ghosh, S.R. Popuri, T.U. Mahesh, K.K. Chattopadhyay, Preparation of nanocrystalline CuAlO2 through sol–gel route, J. Sol-Gel Sci. Technol. 52 (2009) 75–81.

DOI: 10.1007/s10971-009-1999-x

Google Scholar

[15] G. Li, X. Zhu, H. Lei, H. Jiang, W. Song, Z. Yang, J. Dai, Y. Sun, X. Pan, S.J. Dai, Preparation and characterization of CuAlO2 transparent thin films prepared by chemical solution deposition method, J. Sol-Gel Sci. Tech. 53 (2010) 641–646.

DOI: 10.1007/s10971-009-2143-7

Google Scholar

[16] J. Smith, T. VanSteenkiste, X. -G. Wang, Thermal photocatalytic generation of H2 over CuAlO2 nanoparticle catalysts in H2O. Phys. Rev. B 79 (2009) 041403.

Google Scholar

[17] S. Kato, R. Fujimaki, M. Ogasawara, T. Wakabayashi, Y. Nakahara, S. Nakata. Oxygen storage capacity of CuMO2 (M = Al, Fe, Mn, Ga) with a delafossite-type structure. Appl. Catal., B, 89(2009) 183–188.

DOI: 10.1016/j.apcatb.2008.11.033

Google Scholar

[18] L. Zhang, P. Li, K. Huang, Z. Tang, G. Liu, Y. Li, Chemical solution deposition and transport properties of epitaxial CuFeO2 thin films Mater. Lett. 65 (2011) 3289–3291.

DOI: 10.1016/j.matlet.2011.07.018

Google Scholar

[19] M. S. Prévot, N. Guijarro, K. Sivula, Enhancing the Performance of a Robust Sol–Gel-Processed p-Type Delafossite CuFeO2 Photocathode for Solar Water Reduction, ChemSusChem. 8 (2015) 1359 –1367.

DOI: 10.1002/cssc.201403146

Google Scholar

[20] Y. Tanaka, N. Terada, T. Nakajima, M. Taguchi, T. Kojima, Y. Takata, S. Mitsuda, M. Oura, Y. Senba, H. Ohashi, S. Shin, Incommensurate orbital modulation behind ferroelectricity in CuFeO2. Phys. Rev. Lett. 109 (2012) 127205-5.

DOI: 10.1103/physrevlett.109.127205

Google Scholar

[21] C. G. Read, Y. Park and K. S. Choi, Electrochemical Synthesis of p-Type CuFeO2 Electrodes for Use in a Photoelectrochemical Cell. J. Phys. Chem. Lett. 3 (2012) 1872–1876.

Google Scholar

[22] X.G. Zheng, K. Taniguchi, A. Takahashi, Y. Liu, C.N. Xu, Room temperature sensing of ozone by transparent p-type semiconductor CuAlO2. Appl. Phys. Lett. 85 (2004) 1728-1729.

DOI: 10.1063/1.1784888

Google Scholar

[23] A. Rogers. Delafossite, a Cuprous Metaferrite from Bisbee, Arizona. Am.J. Sci. 35 (1913) 290–294.

DOI: 10.2475/ajs.s4-35.207.290

Google Scholar

[24] H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, H. Hosono, P-type electrical conduction in transparent thin films of CuAlO2 , Nature. 389 (1997) 939-942.

DOI: 10.1038/40087

Google Scholar

[25] K. Tonooka, H. Bando, Y. Aiura, Photovoltaic effect observed in transparent p–n heterojunctions based on oxide semiconductors, Thin Solid Films. 445 (2003) 327-331.

DOI: 10.1016/s0040-6090(03)01177-5

Google Scholar

[26] R. Manoj, M. Nisha, K.A. Vanaja, M.K. Jayaraj, Effect of oxygen intercalation on properties of sputtered CuYO2 for potential use as p-type transparent conducting films, Bull. Mater. Sci. 31 (2008) 49-53.

DOI: 10.1007/s12034-008-0009-1

Google Scholar

[27] R. Seshadri, C. Felser and K. Thieme, W. Tremel, Metal−Metal Bonding and Metallic Behavior in Some ABO2Delafossites. Chem. Mater. 10(1998) 2189–2196.

DOI: 10.1021/cm980079v

Google Scholar

[28] X. Qiu, M. Liu, M. Miyauchi, K. Hashimoto, K. Sunada. A facile one-step hydrothermal synthesis of rhombohedral CuFeO2 crystals with antivirus property. Chem. Commun. 48(2012) 7365–7367.

DOI: 10.1039/c2cc33475e

Google Scholar

[29] A. B. Garg, A. K. Mishra, K. K. Pandey, and S. M. Sharma, Multiferroic CuCrO2 under high pressure: In situ X-ray diffraction and Raman spectroscopic studies, J. Applied Phy. 116 (2014) 133514.

DOI: 10.1063/1.4896952

Google Scholar

[30] T. Arima, Ferroelectricity Induced by Proper-Screw Type Magnetic Order. J. Phys. Soc. Jpn. 76 (2007) 073702-073706.

DOI: 10.1143/jpsj.76.073702

Google Scholar

[31] G. Ehlers, A. A. Podlesnyak, M. Frontzek, R. S. Freitas, L. Ghivelder, J. S. Gardner, S. V. Shiryaev, and S. Barilo, A detailed study of the magnetic phase transition in CuCrO2. J. Phys. Condens. Matter. 25 (2013) 496009-496015.

DOI: 10.1088/0953-8984/25/49/496009

Google Scholar

[32] X. Nie, H.S. Wie, S.B. Zhang, First-principles study of transparent p-type conductive SrCu2O2 and related compounds. Phys. Rev. B 65 (2002) 075111.

Google Scholar

[33] D.O. Scanlon, W. Watson, (Cu2S2)(Sr3Sc2O5)−A Layered, Direct Band Gap, p-Type Transparent Conducting Oxychalcogenide: A Theoretical Analysis. Chem. Mater. 21 (2009) 5435-5442.

DOI: 10.1021/cm902260b

Google Scholar

[34] A.N. Banerjee, K.K. Chattopadhyay, Recent developments in the emerging field of crystalline p-type transparent conducting oxide thin films. Prog. Cryst. Growth Charact. 50 (2005) 52-105.

DOI: 10.1016/j.pcrysgrow.2005.10.001

Google Scholar

[35] M. A. Ali, A. Khan, S. H. Khan, T. Ouahrani, G. Murtaza, R. Khenata, S. Bin Omran, First principles study of Cu based Delafossite Transparent Conducting Oxides CuXO2 (X=Al, Ga, In, B, La, Sc, Y), Materials Science in Semiconductor Processing. 38 (2015).

DOI: 10.1016/j.mssp.2015.03.038

Google Scholar

[36] T. Kimura, J.C. Lashley, A.P. Ramirez, Inversion-symmetry breaking in the noncollinear magnetic phase of the triangular-lattice antiferromagnet CuFeO2, Physical Review B. 73 (2006) 220401(R).

DOI: 10.1103/physrevb.73.220401

Google Scholar

[37] S. Seki, Y. Yamasaki, Y. Shiomi, S. Iguchi, Y. Onose, Y. Tokura, Impurity-doping-induced ferroelectricity in the frustrated antiferromagnet CuFeO2, Physical Review B 75 (2007) 100403(R).

DOI: 10.1103/physrevb.75.100403

Google Scholar

[38] N.A. Hill, Why Are There so Few Magnetic Ferroelectrics?, J. Phys. Chem. B. 104 (2000) 6694.

Google Scholar

[39] D.I. Khomskii, Multiferroics: Different ways to combine magnetism and ferroelectricity.J. Magn. Magn. Mater. 306 (2006) 1-8.

DOI: 10.1016/j.jmmm.2006.01.238

Google Scholar

[40] G. Lawes, A.B. Harris, T. Kimura, N. Rogado, R.J. Cava, A. Aharony, O. Entin- Wohlman, T. Yildrim, M. Kenzelmann, C. Broholm, A.P. Ramirez, Magnetically Driven Ferroelectric Order in Ni3V2O8. Physical Review Letters. 95 (2005) 087205-4.

DOI: 10.1103/physrevlett.95.087205

Google Scholar

[41] H. Katsura, N. Nagasoa, A.V. Balatsky, Spin current and magnetoelectric effect in noncollinear magnets. Physical Review Letters. 95 (2005) 057205.

DOI: 10.1103/physrevlett.95.057205

Google Scholar

[42] M. Mostovoy, Ferroelectricity in Spiral Magnets. Physical Review Letters. 96 (2006) 067601.

Google Scholar

[43] T. Elkhouni, M. Amami, C.V. Colin, A. Ben Salah, Structural and magnetoelectric interactions of (Ca, Mg)-doped polycrystalline multiferroic CuFeO2, Mater. Res. Bull. 53 (2014) 151–157.

DOI: 10.1016/j.materresbull.2014.01.035

Google Scholar

[44] Y.H. Chuai, B. Hu, Y.D. Li, H.Z. Shen, C.T. Zheng, Y.D. Wang, Effect of Sn substitution on the structure, morphology and photoelectricity properties of high c-axis oriented CuFe1-xSnxO2 film thin, J. Alloys Compd. 627 (2015) 299–306.

DOI: 10.1016/j.jallcom.2014.12.118

Google Scholar

[45] A. Renaud, B. Chavillon, L. Le Pleux, Y. Pellegrin, E. Blart, M. Boujtita, T. Pauporté, L. Cario, S. Jobic, F. Odobel, CuGaO2: a promising alternative for NiO in p-type dye solar cells. J. Mater. Chem. 22 (2012) 14353–14356.

DOI: 10.1039/c2jm31908j

Google Scholar

[46] M.Z. Yu, G. Natu, Z.Q. Ji, Y.Y. Wu, p-Type Dye-Sensitized Solar Cells Based on Delafossite CuGaO2 Nanoplates with Saturation Photovoltages Exceeding 460 mV. J. Phys. Chem. Lett. 3 (2012) 1074–1078.

DOI: 10.1021/jz3003603

Google Scholar

[47] M. Yu, T.I. Draskovic, Y. Wu, Understanding the Crystallization Mechanism of Delafossite CuGaO2 for Controlled Hydrothermal Synthesis of Nanoparticles and Nanoplates. Inorg. Chem. 53 (2014) 5845–5851.

DOI: 10.1021/ic500747x

Google Scholar

[48] Z. Xu, D. Xiong, H. Wang, W. Zhang, X. Zeng, L. Ming, W. Chen, X. Xu, J. Cui, M. Wang, S. Powar, U. Bach, Y. -B.J. Cheng, Remarkable photocurrent of p-type dye-sensitized solar cell achieved by size controlled CuGaO2 nanoplates. J. Mater. Chem. A 2 (2014).

DOI: 10.1039/c3ta14072e

Google Scholar

[49] D.H. Xiong, Z. Xu, X.W. Zeng, W.J. Zhang, W. Chen, X.B. Xu, M.K. Wang, Y. -B. Cheng, Hydrothermal synthesis of ultrasmall CuCrO2 nanocrystal alternatives to NiO nanoparticles in efficient p-type dye-sensitized solar cells. J. Mater. Chem. 22 (2012).

DOI: 10.1039/c2jm35101c

Google Scholar

[50] D.H. Xiong, W.J. Zhang, X.W. Zeng, Z. Xu, W. Chen, M.K. Wang, L.C. Sun, Y.B. Cheng, Enhanced Performance of p-Type Dye-Sensitized Solar Cells Based on Ultrasmall Mg-Doped CuCrO2 Nanocrystals. ChemSusChem. 6 (2013) 1432–1437.

DOI: 10.1002/cssc.201300265

Google Scholar

[51] X. Xu, B. Zhang, J. Cui, D. Xiong, Y. Shen, W. Chen, L. Sun, Y. Cheng, M. Wang, Efficient p-type dye-sensitized solar cells based on disulfide/thiolate electrolytes. Nanoscale 5 (2013) 7963–7969.

DOI: 10.1039/c3nr02169f

Google Scholar

[52] X. Xu, J. Cui, J. Han, J. Zhang, Y. Zhang, L. Luan, G. Alemu, Z. Wang, Y. Shen, D. Xiong, W. Chen, Z. Wei, S. Yang, B. Hu, Y. Cheng, M. Wang, Sci. Rep. (2014) 4.

DOI: 10.1038/srep03961

Google Scholar

[53] M. M. Moharam, R. M. Abou-Shahba, M. M. Rashad, E. M. Elsayed, A facile novel synthesis of delafossite CuFeO2 powders, J Mater Sci: Mater Electron. 25 (2014) 1798–1803.

DOI: 10.1007/s10854-014-1801-x

Google Scholar

[54] D. Xiong, Y. Qi, X. Li, X. Liu, H. Tao, W. Chen, X. Zhao, Hydrothermal synthesis of delafossite CuFeO2 crystals at 100 °C, RSC Adv. 5 (2015) 49280–49286.

DOI: 10.1039/c5ra08227g

Google Scholar

[55] S. Kumar, M. Miclau, C. Martin, Hydrothermal Synthesis of AgCrO2Delafossite in Supercritical Water: A New Single-Step Process. Chem. Mater. 25 (2013) 2083–(2088).

DOI: 10.1021/cm400420e

Google Scholar

[56] B.J. Ingram, G.B. González, T.O. Mason, D.Y. Shahriari, A. Barnabe, D. Ko, K.R. Poeppelmeier, Transport and Defect Mechanisms in Cuprous Delafossites. 1. Comparison of Hydrothermal and Standard Solid-State Synthesis in CuAlO2. Chem. Mater. 16 (2004).

DOI: 10.1002/chin.200513013

Google Scholar

[57] E. Mugnier, P. Barnabé, P. Tailhades, Synthesis and characterization of CuFeO2+δ delafossite powders. Solid State Ionics 177 (2006) 607–612.

DOI: 10.1016/j.ssi.2005.11.026

Google Scholar

[58] R. Nagarajan, N. Duan, M.K. Jayaraj, J. Lia, K.A. Vanaja, A. Yokochi, A. Draeseke, J. Tate, A.W. Sleight, p-Type conductivity in the delafossite structure. Int. J. Inorg. Mater. 3 (2001) 265–270.

DOI: 10.1016/s1466-6049(01)00006-x

Google Scholar

[59] S. Ouyang, Z. Li, Z. Ouyang, T. Yu, J. Ye, Z. Zou, Correlation of Crystal Structures, Electronic Structures, and Photocatalytic Properties in a Series of Ag-based Oxides:  AgAlO2, AgCrO2, and Ag2CrO4. J. Phys. Chem. C. 112 (2008) 3134–3141.

DOI: 10.1021/jp077127w.s002

Google Scholar

[60] Y. Ma, P. Liu, X. Zhou, Y. Zhang, Q. Ma, C. Li, A. Litke, E. J. M. Hensen, Photoelectrochemical Properties of CuCrO2: Characterization of Light Absorption and Photocatalytic H2 Production Performance, Catal Lett. 144(2014) 1487–1493.

DOI: 10.1007/s10562-014-1318-1

Google Scholar

[61] S. Ouyang, N. Kikugawa, D. Chen, Z. Zou, J. Ye, A Systematical Study on Photocatalytic Properties of AgMO2 (M = Al, Ga, In): Effects of Chemical Compositions, Crystal Structures, and Electronic Structures. J. Phys. Chem. C. 113 (2009)1560–1566.

DOI: 10.1021/jp806513t

Google Scholar

[62] M. Shimode, Y. Hayashi, M. Sasaki, K. Mukaida, Mater. Trans. 41 (2000) 1111–1113.

Google Scholar

[63] T. Dittrich, L. Dloczik, T. Guminskaya, M.C. Lux-Steiner, N. Grigorieva, I. Urban, Photovoltage characterization of CuAlO2 crystallites. Appl. Phys. Lett. 85 (2004) 742-744.

DOI: 10.1063/1.1776611

Google Scholar

[64] M. Asemi, M. Ghanaatshoar, Preparation of CuCrO2 nanoparticles with narrow size distribution by sol–gel method, J Sol-Gel SciTechnol. 70 (2014) 416–421.

DOI: 10.1007/s10971-014-3298-4

Google Scholar

[65] K. Tonooka, K. Shimokawa, O. Nishimura, effect in sputter-deposited CuAlO2 Properties of copper–aluminium oxide films prepared by solution methods, Thin Solid Films. 411(2002)129–133.

DOI: 10.1016/s0040-6090(02)00201-8

Google Scholar

[66] U. Sidik, H. Y. Lee, J.Y. Lee, Characteristics of the Mg-Doped Cr-Deficient CuCr0. 95Mg0. 02O2 Thin Films Prepared by Using Pulsed Laser Deposition, J. Nanosci. Nanotechnol15 (2015) 5163–5166.

DOI: 10.1166/jnn.2015.10401

Google Scholar

[67] T. Joshi, T. R. Senty, R. Trappen, J. Zhou, S. Chen, P. Ferrari, P. Borisov, X. Song, M. B. Holcomb, A.D. Bristow, A. L. Cabrera, David Lederman, Structural and magnetic properties of epitaxial delafossite CuFeO2 thin films grown by pulsed laser deposition. J. Appl. Phys117 (2015).

DOI: 10.1063/1.4905424

Google Scholar

[68] M. Neumann-Spallart, S.P. Pai, R. Pinto, PLD growth of CuAlO2, Thin Solid Films. 515 (2007)8641–8644.

DOI: 10.1016/j.tsf.2007.03.109

Google Scholar

[69] H. Yanagi, H. Kawazoe, A. Kudo, M. Yasukawa, H. Hosono, Chemical design and Thin film preparation of p-type conductive transparent oxides, J. Electroceram. 4(2000)407–414.

Google Scholar

[70] R.S. Yu, H. -H. Yin, Structural and optoelectronic properties of p-type semiconductor CuAlO2 thin films, Thin Solid Films. 526 (2012) 103–108.

DOI: 10.1016/j.tsf.2012.11.033

Google Scholar

[71] A. Barnabé , E. Mugnier, L. Presmanes, Ph. Tailhades, Preparation of delafossite CuFeO2 thin films by rf-sputtering on conventional glass substrate, Materials Letters, 29–30 (2006) 3468–3470.

DOI: 10.1016/j.matlet.2006.03.033

Google Scholar

[72] Y. Zhang, Z. Liu, L. Feng, D. Zang, Effect of oxygen partial pressure on the structure And properties of Cu–Al–O thin films, Appl. Surf. Sci. 258(2012)5354–5359.

DOI: 10.1016/j.apsusc.2012.02.003

Google Scholar

[73] A.N. Banerjee, S.W. Joo, Poole–Frenkel effect in sputter-deposited CuAlO2+x nanocrystals. Nanotechnology. 24(2013) 165705.

DOI: 10.1088/0957-4484/24/16/165705

Google Scholar

[74] G. Riveros, C. Garín, D. Ramírez, E.A. Dalchiele, R.E. Marotti, C.J. Pereyra, E. Spera, H. Gómez, P. Grez, F. Martín, J.R. Ramos-Barrado, Delafossite CuFeO2 thin films electrochemically grown from a DMSO based solution, Electrochimica Acta. 164 (2015).

DOI: 10.1016/j.electacta.2015.02.226

Google Scholar

[75] J. H. Roudebush, G. Sahasrabudhe, S. L. Bergman, R. J. Cava, Rhombohedral Polytypes of the Layered Honeycomb Delafossites with Optical Brilliance in the Visible, Inorg. Chem. 54 (2015) 3203-3210.

DOI: 10.1021/ic502790n

Google Scholar

[76] A. Mohan, B. Büchner, S. Wurmehl, C. Hess, Growth of single crystalline delafossite LaCuO2 by the travelling-solvent floating zone method, J. Cryst. Growth. 402 (2014) 304–307.

DOI: 10.1016/j.jcrysgro.2014.06.023

Google Scholar

[77] 77. C. Baratto, R. Kumar, G. Faglia, , K. Vojisavljevi, B. Malic, p-Type copper aluminum oxide thin films for gas-sensing applications, Sens. Actuators, B 209 (2015) 287–296.

DOI: 10.1016/j.snb.2014.11.116

Google Scholar

[78] 78. T. Suriwong, T. Thongtem, S. Thongtem, Thermoelectric and optical properties of CuAlO2 synthesized by direct microwave heating, Curr. Appl. Phys. 14 (2014) 1257-1262.

DOI: 10.1016/j.cap.2014.06.024

Google Scholar

[79] 79. H. Nasu, M. Hasegawa, T. Hashimoto, A. Ishihara, K. Fujita, K. Tanaka, Preparation and properties of Sol–Gel derived CuFeO2 thin films by dip-coating technique, J. Ceram. Soc. Jpn. 123 (2015) 448-451.

DOI: 10.2109/jcersj2.123.448

Google Scholar

[80] 80. W. Wei, Z. Jichen, X. Jing, L. Dabing, Catalytic Removal of PM by Li-Co Delafossite Catalysts, Journalof Wuhan University of Technology-Mater. Sci. Ed. 2015, DOI 10. 1007/s11595-015-1166-x.

DOI: 10.1007/s11595-015-1166-x

Google Scholar

[81] R. Brahimi, G. Rekhila, M. Trari, Y. Bessekhouad, Crystal Growth and Transport Properties of CuAlO2 Single Crystal, Crystallography Reports. 59 (2014)1088–1092.

DOI: 10.1134/s1063774514070062

Google Scholar

[82] J. Patzsch, I. Balog, P. Krauß, C. W. Lehmann, J. J. Schneider, Synthesis, characterization and p–n type gas sensing behaviour of CuFeO2 delafossite type inorganic wires using Fe and Cu complexes as single source molecular precursors, RSC Adv. 4 (2014).

DOI: 10.1039/c3ra47514j

Google Scholar

[83] N. Terada, S. Mitsuda, T. Fjuii, K. Soejima, I. Doi, H. ArugaKatori, and Y. Noda, Magnetic Phase Diagram of the Triangular Lattice Antiferromagnet CuFe1-xAlxO2,J. Phys. Soc. Jpn. 74 (2005) 2604.

DOI: 10.1143/jpsj.74.2604

Google Scholar

[84] L. S. Kau, D. J. Spiro-Solomon, J. E. Penner-Hahn, K. O. Hodgeson, and E. I. Solomon, X-ray Absorption Edge Determination of the Oxidation State and Coordination Number of Copper: Application to the Type 3 Site in Rhusvernicifera Laccase and Its Reaction with Oxygen, J. Am. Chem. Soc. 109(1987).

DOI: 10.1021/ja00255a032

Google Scholar

[85] D. J. Liu and H. J. Robota, In situ XANES characterization of the Cu oxidation state in Cu-ZSM-5 during NO decomposition catalysis, Catal. Lett. 21 (1993) 291.

DOI: 10.1007/bf00769481

Google Scholar

[86] M. Lalanne, A. Barnabe, F. Mathieu, and Ph. Tailhades, Synthesis and Thermostructural Studies of a CuFe1−xCrxO2 Delafossite Solid Solution with 0 ≤ x ≤ 1. Inorg. Chem. 48 (2009) 6065.

DOI: 10.1021/ic900437x

Google Scholar

[87] K. El Ataoui, J. -P. Doumerc, A. Ammar, J. -C. Grenier, L. Fourne`s, A. Wattiaux, and M. Pouchard, Delafossite oxides containing vanadium (III): Preparation and magnetic properties. Solid State Sci. 7 (2005) 710-717.

DOI: 10.1016/j.solidstatesciences.2004.11.030

Google Scholar

[88] B. Kundys, A. Maignan, D. Pelloquin, and Ch. Simon, Magnetoelectric interactions in polycrystalline multiferroic antiferromagnets CuFe(1-x)RhxO2 (x=0. 00 and x=0. 05). Solid State Sci. 11 (2009) 1035.

DOI: 10.1016/j.solidstatesciences.2009.02.008

Google Scholar

[89] C. Gao, F. Lin, X. Zhou, W. Shi, and A. Liu, Fe concentration dependences of microstructure and magnetic properties for Cu(Cr1−xFex)O2 ceramics. J. Alloys Compd. 565 (2013) 154-158.

DOI: 10.1016/j.jallcom.2013.02.161

Google Scholar

[90] T. T. A. Lummen, C. Strohm, H. Rakoto, A. A. Nugroho, and P. H. M. van Loosdrecht, High-field recovery of the undistorted triangular lattice in the frustrated metamagnet CuFeO2. Phys. Rev. B 80 (2009) 012406.

DOI: 10.1103/physrevb.80.012406

Google Scholar

[91] K. Mori, M. Hachisu, T. Yamazaki, and Y. Ichiyanagi, Magnetic properties of CuFe1- xCrx O2 nanoparticles surrounded by amorphous SiO2,J. Appl. Phys. 117 (2015) 17C756.

Google Scholar

[92] T. Elkhouni, M. Amami, P. Strobel, A. Ben Salah, Evidence of Development of New Spin Orders Benefiting to Enhance Magnetic Properties in Co2+-Doped Delafossite-Type Oxide CuCrO2, J Supercond Nov Magn 28 (2015) 1–8.

DOI: 10.1007/s10948-014-2842-3

Google Scholar

[93] R. Cava, H. Zandbergen, A. Ramirez, H. Takagi, C. Chen, J. Krajewski, W.P. J Waszczak Jr., G. Meigs, R. Roth, L. Schneemeyer, LaCuO2. 5+x and YCuO2. 5+x Delafossites: Materials with Triangular Cu2+δ Planes. J. Solid State Chem. 104(1993) 437–452.

DOI: 10.1006/jssc.1993.1179

Google Scholar

[94] H. Haas, E. Kordes, Cu1+-haltige Doppeloxide mit seltenen Erdmetallen. Z. Kristallogr. 129 (1969) 259–270.

DOI: 10.1524/zkri.1969.129.16.259

Google Scholar

[95] B. Bellal, S. Saadi, N. Koriche, A. Bouguelia, M. Trari, Physical properties of the delafossite LaCuO2. J. Phys. Chem. Solids. 70(2009) 1132–1136.

DOI: 10.1016/j.jpcs.2009.06.011

Google Scholar

[96] A. Jacob, C. Parent, P. Boutinaud, G.L. Flem, J. Doumerc, A. Ammar, M. Elazhari, M. Elaatmani, Luminescent properties of delafossite-type oxides LaCuO2 and YCuO2. Solid State Commun. 103 (1997) 529–532.

DOI: 10.1016/s0038-1098(97)00224-x

Google Scholar

[97] Y. Liu, Y. Huang, H.J. Seo, Y. Wu, Blueshift in near-band-edge emission in Y3+ doped CuAlO2 nanofibers, Optical Materials Express. 4 (2014) 2602-2607.

DOI: 10.1364/ome.4.002602

Google Scholar

[98] Y.H. Chuai, B. Hu, Y.D. Li, H.Z. Shen, C.T. Zheng, Y.D. g Wang, Effect of Sn substitution on the structure, morphology and photoelectricity properties of high c-axis oriented CuFe1-xSnxO2film thin, J. Alloy. Compd. 627 (2015) 299–306.

DOI: 10.1016/j.jallcom.2014.12.118

Google Scholar

[99] L. Naka-in, T. Kamwanna, P. Srepusharawoot, S. Pinitsoontorn, V. Amornkitbamrung, Effects of Ge substitution on the structural and physical properties of CuFeO2 delafossite oxide, Jpn. J. Appl. Phys. 54 (2015) 04DH10.

DOI: 10.7567/jjap.54.04dh10

Google Scholar

[100] S. Kato, R. Kawashima, M. Ogasawara, Oxygen storage–release behavior of delafossite-type CuCr1-xMxO2 (M =Fe, Ga), J Mater Sci. 50 (2015) 2876–2883.

DOI: 10.1007/s10853-015-8850-2

Google Scholar

[101] O'Regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 353 (1991)737–40.

DOI: 10.1038/353737a0

Google Scholar

[102] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H.H. Pettersson. Dye-sensitized solar cells. Chem Rev. 110 (2010) 6595–663.

DOI: 10.1021/cr900356p

Google Scholar

[103] J. Ahmed, C.K. Blakely, J. Prakash, S.R. Bruno, M. Yu, Y. Wu, V.V. Poltavets, Scalable synthesis of delafossite CuAlO2 nanoparticles for p-type dye-sensitized solar cells applications. J. Alloy. Compd. 591 (2014) 275–279.

DOI: 10.1016/j.jallcom.2013.12.199

Google Scholar

[104] 104. A. Nattestad, X. Zhang, U. Bach, Y. -B. Cheng, Dye-sensitized CuAlO2 photocathodes for tandem solar cell applications J. Photon. Energ. 1 (2011) 011103.

DOI: 10.1117/1.3528236

Google Scholar

[105] S. Powar, D. Xiong, T. Daeneke, M.T. Ma, A. Gupta, G. Lee, S. Makuta, Y. Tachibana, W. Chen, L. Spiccia, Y.B. Cheng, G. Gotz, P. Bauerle, U. Bach, Improved Photovoltages for p-Type Dye-Sensitized Solar Cells Using CuCrO2 Nanoparticles, J. Phys. Chem. C. 118 (2014).

DOI: 10.1021/jp409363u

Google Scholar

[106] F. Odobel, Y. Pellegrin, Recent Advances in the Sensitization of Wide-Band-Gap Nanostructured p-Type Semiconductors. Photovoltaic and Photocatalytic Applications. J. Phys. Chem. Lett. 4 (2013) 2551–2564.

DOI: 10.1021/jz400861v

Google Scholar

[107] M. Yu, T.I. Draskovic, Y. Wu, Cu(I)-based delafossite compounds as photocathodes in p-type dye-sensitized solar cells, Phys. Chem. Chem. Phys. 16 (2014) 5026–5033.

DOI: 10.1039/c3cp55457k

Google Scholar

[108] D. Xiong, H. Wang, W. Zhang, X. Zeng, H. Chang, X. Zhao, W. Chen, Y.B. Cheng, Preparation of p-type AgCrO2 nanocrystals through low-temperature hydrothermal method and the potential application in p-typedye-sensitized solar cell, J. Alloy. Compd. 642 (2015).

DOI: 10.1016/j.jallcom.2015.04.072

Google Scholar

[109] C. W. Kim, Y.S. Son, A. U. Pawar, M.J. Kang, J. Y. Zheng, V. Sharma, P. Mohanty, Y. S. Kang, Facile fabrication and photoelectrochemical properties of a one axis-oriented NiO thin film with a (111) dominant facet, J. Mater. Chem. A, 2 (2014).

DOI: 10.1039/c4ta03606a

Google Scholar

[110] L. Chu, M. Li, Z. Wan, L. Ding, D. Song, S. Dou, J. Chen, Y. Wang Morphology control and fabrication of multi-shelled NiO spheres by tuning the pH value via a hydrothermal process, CrystEngComm, 16 (2014) 11096-11101.

DOI: 10.1039/c4ce01718h

Google Scholar

[111] J. Wang, V. Ibarra, D. Barrera, L. Xu, Y.J. Lee, J. W. P. Hsu, Solution Synthesized p-Type Copper Gallium Oxide Nanoplates as Hole Transport Layer for Organic Photovoltaic Devices, J. Phys. Chem. Lett. 6 (2015) 1071-1075.

DOI: 10.1021/acs.jpclett.5b00236

Google Scholar

[112] J. Robertson, R. Gillen, S.J. Clark, Advances in understanding of transparent conducting oxides . Thin Solid Films. 520 (2012) 3714–3720.

DOI: 10.1016/j.tsf.2011.10.063

Google Scholar

[113] A. Renaud, L. Cario, P. Deniard, E. Gautron, X. Rocquefelte, Y. Pellegrin, E. Blart, F. Odobel, S. Jobic, Impact of Mg Doping on Performances of CuGaO2 Based p-Type Dye-Sensitized Solar Cells, J. Phys. Chem. C. 118 (2014) 54-59.

DOI: 10.1021/jp407233k

Google Scholar

[114] D. Ursu, M. Miclau, R. Banica, N. Vaszilcsin, Impact of Fe doping on performances of CuGaO2 p-type dye-sensitized Solar cells, Materials Letters. 143 (2015) 91–93.

DOI: 10.1016/j.matlet.2014.12.081

Google Scholar

[115] M. Miclau, d. Ursu, S. Kumar, I. Grozescu. Hexagonal polytype of CuCrO2 nanocrystals obtained by hydrothermal method. J Nanopart Res. 14 (2012) 1110.

DOI: 10.1007/s11051-012-1110-3

Google Scholar

[116] R. Gillen, J. Robertson, Band structure calculations of CuAlO2, CuGaO2, CuInO2, and CuCrO2 by screened exchange. Phys. Rev. B 84 (2011) 035125.

Google Scholar

[117] Y. Kumekawa, M. Hirai, Y. Kobayashi, S. Endoh, E. Oikawa, T.J. Hashimoto, Evaluation of thermodynamic and kinetic stability of CuAlO2 and CuGaO2. J. Therm. Anal. Calorim. 99 (2010) 57-63.

DOI: 10.1007/s10973-009-0454-0

Google Scholar

[118] Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa and T. Miyasaka, Tin-Based Amorphous Oxide: A High-Capacity Lithium-Ion-Storage, Mater. Sci. 276 (1997) 1395-1397.

DOI: 10.1126/science.276.5317.1395

Google Scholar

[119] 119. Y. Dong, C. Cao, Y.S. Chui, J. A. Zapien, Facile hydrothermal synthesis of CuFeO2 hexagonal platelets/rings and grapheme composites as anode materials for lithium ion batteries, Chem. Commun. 50 (2014) 10151-10154.

DOI: 10.1039/c4cc03534h

Google Scholar

[120] S. Saadi, A. Bouguelia, M. Trari, Photocatalytic hydrogen evolution over CuCrO2. Sol. Energy. 80 (2006) 272 –280.

DOI: 10.1016/j.solener.2005.02.018

Google Scholar

[121] I. Herraiz-Cardona, F. Fabregat-Santiago, A. Renaud, B. Juli'n-Lûpez, F. Odobel, L. Cario, S. Jobic, S. Gimnez, Electrochim. Acta. 113 (2013) 570 –574.

DOI: 10.1016/j.electacta.2013.09.129

Google Scholar

[122] J. Gu, Y. Yan, J. W. Krizan, Q.D. Gibson, Z. M. Detweiler, R.J. Cava, A. B. Bocarsly, p-Type CuRhO2 as a Self-Healing Photoelectrode for Water Reduction under Visible Light. J. Am. Chem. Soc. 136 (2014) 830 –833.

DOI: 10.1021/ja408876k

Google Scholar

[123] P. Poopanya, First-principles study of electronic structures and thermoelectric Properties of 2H–CuAlO2, Physics Letters A. 379 (2015) 853–856.

DOI: 10.1016/j.physleta.2014.04.072

Google Scholar

[124] Q.J. Liu, F.S. Liu, Z.T. Liu, Effects of different concentration S-doping on the structural stabilityand electronic structures of delafossite CuAlO2, Comput. Mater. Sci. 101 (2015) 152–155.

DOI: 10.1016/j.commatsci.2015.01.042

Google Scholar

[125] K. Toyoda, R. Hinogami, N. Miyata, M. Aizawa, Calculated Descriptors of Catalytic Activity for Water Electrolysis Anode: Application to Delafossite Oxides, J. Phys. Chem. C. 119 (2015) 6495-6501.

DOI: 10.1021/jp5092398

Google Scholar

[126] M.N. Huda, Y. Yan, M.M. Al-Jassim, The effects of Bi alloying in Cu delafossites: A density functional theory study. J. Appl. Phys. 109 (2011) 113710.

DOI: 10.1063/1.3592149

Google Scholar

[127] K. Gurunathan, J. O. Baeg, S. M. Lee, E. Subramanian, S. J. Moon, and K. J. Kong, Visible light assisted highly efficient hydrogen production from H2S decomposition by CuGaO2 and CuGa1−xInxO2delafossite oxides bearing nanostructured co-catalysts. Catal. Commun. 9 (2008).

DOI: 10.1016/j.catcom.2007.07.021

Google Scholar

[128] 128. A. P. Amrute, G. O. Larrazabal, C. Mondelli, and J. Perez-Ramirez, CuCrO2Delafossite: A Stable Copper Catalyst for Chlorine Production. Angew. Chem. Int. Ed. 52 (2013) 9772-9775.

DOI: 10.1002/anie.201304254

Google Scholar

[129] W. Ketir, A. Bouguelia, M. Trari, Photocatalytic removal of M2+ (=Ni, Cd2+, Hg2+ and Ag+) over new catalyst CuCrO2, J. Hazard. Mater. 158 (2008) 257-263.

DOI: 10.1016/j.jhazmat.2008.01.074

Google Scholar

[130] 130. M. Lee, D. Kim, Y. T. Yoon, Y. Kim, Photoelectrochemical Water Splitting on a Delafossite CuGaO2 Semiconductor Electrode, Bull. Korean Chem. Soc. 35 (2014)3261-3266.

DOI: 10.5012/bkcs.2014.35.11.3261

Google Scholar

[131] A. R. Hajipour, M. Karimzadeh, S. Ghorbani, Selective Azidation of Aryl Halides to Aryl Azides Promoted by Proline and CuFeO2, SYNLETT. 25 (2014) 2903–2907.

DOI: 10.1055/s-0034-1378903

Google Scholar

[132] A.P. Amrute, G. Larrazábal, C. Mondelli, J. Pérez-Ramírez, CuCrO2 Delafossite: A Stable Copper Catalyst for Chlorine Production, Angew. Chem. 125 (2013) 9954 –9957.

DOI: 10.1002/ange.201304254

Google Scholar

[133] W. Ketir, A. Bouguelia, M. Trari, NO3− removal with a new delafossite CuCrO2 photocatalyst. Desalination. 244 (2009) 144-152.

DOI: 10.1016/j.desal.2008.05.020

Google Scholar

[134] W. Ketir, G. Rekhila, M. Trari, A. Amrane. Preparation, characterization and application of CuCrO2/ZnO photocatalysts for the reduction of Cr(VI). J Environ Sci China 24 (2012) 2173-2182.

DOI: 10.1016/s1001-0742(11)61043-7

Google Scholar

[135] P. Zhang, Y.F. Shi, M.F. Chi, J.N. Park, G.D. Stucky, E.W. McFarland, L. Gao Mesoporous delafossite CuCrO2 and spinel CuCr2O4: synthesis and catalysis. Nanotechnology. 24 (2013) 345704.

DOI: 10.1088/0957-4484/24/34/345704

Google Scholar

[136] A.C. Rastogi, S.H. Lim, S.B. Desu. Structure and optoelectronic properties of spray deposited Mg doped p-CuCrO2 semiconductor oxide thin films, J. Appl . Phys. 104 (2008) 023712.

DOI: 10.1063/1.2957056

Google Scholar

[137] Y.P. Wang, T.W. Chiu, C.H. Chang, C. Xuan, G.J. Cheng, Transparent and antibacterial Cu2Y2O5 thin films by chemical solution deposition, Thin Solid Films 570 (2014) 547–551.

DOI: 10.1016/j.tsf.2014.02.033

Google Scholar

[138] L. Armelao, D. Barreca, G. Bottaro, A. Gasparotto, C. Maccato, C. Maragno, E. Tondello, U.L. Štangar, M. Bergant, D. Mahne, Photocatalytic and antibacterial activity of TiO2 and Au/TiO2nanosystems, Nanotechnology 18 (2007) 375709.

DOI: 10.1088/0957-4484/18/37/375709

Google Scholar

[139] T.W. Chiu, S. -W. Tsai, Y. -P. Wang, K. -H. Hsu, Preparation of p-type conductive transparent CuCrO2: Mg thin films by chemical solution deposition with two-step annealing, Ceram. Int. 38 (2012) S673.

DOI: 10.1016/j.ceramint.2011.09.048

Google Scholar

[140] T.W. Chiu, Y.C. Yang, A. -C. Yeh, Y.P. Wang, Y.W. Feng, Antibacterial property of CuCrO2 thin films prepared by RF magnetron sputtering deposition, Vacuum 87 (2013) 174.

DOI: 10.1016/j.vacuum.2012.04.026

Google Scholar

[141] J. Musil, J. Blazek, R. Cerstvy, S. Proksova, Antibacterial Cr–Cu–O films prepared by reactive magnetron sputtering, Appl. Surf. Sci. 276 (2013) 660.

DOI: 10.1016/j.apsusc.2013.03.150

Google Scholar

[142] H. N. Abdelhamid, A. Talib, H.F. Wu, Facile synthesis of water soluble silver ferrite (AgFeO2) nanoparticles and their biological evaluation as antibacterial agents. RSC advances, 5 (2015) 34594–34602.

DOI: 10.1039/c4ra14461a

Google Scholar

[143] 143. J. O'Gorman, H. Humphreys, Application of copper to prevent and control infection. Where are we now? J. Hosp. Infect. 81 (2012) 217.

DOI: 10.1016/j.jhin.2012.06.009

Google Scholar

[144] US Environmental Protection Agency, EPA Registers Copper-containing Alloy Products, www. epa. gov/pesticides/factsheets/copper-alloy-products. htm (2012).

Google Scholar

[145] 145. Directive 2011/65/EU of the European Parliament and of the Council, Official Journal of the European Union, 2011 (L74/100).

Google Scholar

[146] M.S. Lee, T.Y. Kim, D. Kim, Anisotropic electrical conductivity of delafossite-type CuAlO2 laminar crystal, Appl. Phys. Lett. 79 (2001) (2028).

DOI: 10.1063/1.1405809

Google Scholar

[147] S. Yanagiya, N. Van Nong, J. Xu, N. Pryds, The effect of (Ag, Ni, Zn)-addition on the thermoelectric properties of copper aluminate, Materials. 3(2010)318–328.

DOI: 10.3390/ma3010318

Google Scholar

[148] R. Kumar, C. Baratto, G. Faglia, G. Sberveglieri, K. Vojisavljevic, B. Malic, Tailoring and characterization of porous hierarchical nanostructured p type thin film of Cu-Al-Oxide for the detection of pollutant gases, Procedia Engineering. 87 ( 2014 ) 252 – 255.

DOI: 10.1016/j.proeng.2014.11.651

Google Scholar

[149] X. Wang, Z. Shi, S. Yao, F. Liao, J. Ding, M. Shao, Gamma ray irradiated AgFeO2 nanoparticles with enhanced gas sensor properties, J. Solid State Chem. 219 (2014) 228–231.

DOI: 10.1016/j.jssc.2014.07.024

Google Scholar

[150] H. N. Abdelhamid, H.F. Wu, Simple and facile synthesis of highly dispersive graphene oxide@sinapinic acid composites and their application as a novel surface assisted laser desorption/ionization mass spectrometry for proteomics and pathogenic bacteria detection, Analyst, 140 (2015).

DOI: 10.1039/c4an02158d

Google Scholar

[151] L. Shastri, H. N. Abdelhamid, M. Nawaz, H.F. Wu, Bidentate nanoparticle–single drop microextraction as a sensitive preconcentrating probes: Synthesis, characterization and application of the silver nanoparticles modified with binary functional groups for highly sensitive protein analysis in MALDI-TOF MS, RSC Adv. 5 (2015).

DOI: 10.1039/c5ra04032a

Google Scholar

[152] H. N. Abdelhamid, M. Bhaisare, H.F. Wu, Ceria nanocubic-ultrasonication assisted dispersive liquid-liquid microextraction coupled with matrix assisted laser desorption/ionization mass spectrometry for pathogenic bacteria analysis, Talanta, 120 (2014).

DOI: 10.1016/j.talanta.2013.11.078

Google Scholar

[153] H. N. Abdelhamid, B.S. Wu, H.F. Wu, Graphene/SiO2@CTAB for high ionization for matrix assisted laser desorption/ionization mass spectrometry. Talanta, 126 (2014) 27–37.

DOI: 10.1016/j.talanta.2014.03.016

Google Scholar

[154] M. L. Bhaisare, H. N. Abdelhamid, B.S. Wu, H.F. Wu, Ionic magnetic for pathogenic bacteria separation. J. Mater. Chem. B, 2 (2014), 4671-4683.

Google Scholar

[155] P.Y. Hua, M. Manikandan, H. N. Abdelhamid, H.F. Wu, Graphene nanoflakes as efficient ionizing matrix for MALDI MS based lipodomics of cancer cells and cancer stem cells, J. Mater. Chem. B. 2 (2014) 7334-7343.

DOI: 10.1039/c4tb00970c

Google Scholar

[156] J. Gopal, H.N. Abdelhamid, P.Y. Hua, H.F. Wu, Chitosan nanomagnets for effective extraction and sensitive mass spectrometric detection of pathogenic bacterial endotoxin from human urine, J. Mater. Chem. B. 1 (2013) 2463-2475.

DOI: 10.1039/c3tb20079e

Google Scholar

[157] H.N. Abdelhamid, H.F. Wu, Facile synthesis of nano silver ferrite (AgFeO2) modified with chitosan applied for biothiol separation, Materials Science and Engineering: C. 45 (2014) 438-445.

DOI: 10.1016/j.msec.2014.08.071

Google Scholar

[158] S. Omeiri, B. Bellal, A. Bouguelia, Y. Bessekhouad, M. Trari, Electrochemical and photoelectrochemical characterization of CuFeO2 single crystal. J. Solid State Electrochem. 13 (2009) 1395–1401.

DOI: 10.1007/s10008-008-0703-3

Google Scholar

[159] J. Gu, A. Wuttig, J. W. Krizan,Y. Hu, Z. M. Detweiler, R.J. Cava, A. B. Bocarsly, Mg-Doped CuFeO2 Photocathodes for Photoelectrochemical Reduction of Carbon Dioxide. J. Phys. Chem. C. 117 (2013) 12415 –12422.

DOI: 10.1021/jp402007z

Google Scholar

[160] V. V. Parfenov, R.A. Nazipov, Effect of Synthesis Temperature on the Transport Properties of Copper Ferrites. Inorg. Mater. 38 (2002)78–82.

Google Scholar

[161] L. Torkian, M.M. Amini. Low temperature synthesis of delafossite CuAlO2 using aluminum nitrate, Mater. Lett. 63 (2001) 587-588.

DOI: 10.1016/j.matlet.2008.11.052

Google Scholar

[162] N.V. Shtertser, A.A. Khassin, V.P. Pakharukova, T.P. Minyukova, Phase transformations during the formation of СuAlO2delafossite from aluminum nitrate and copper oxide, Materials Letters. 149 (2015) 130–132.

DOI: 10.1016/j.matlet.2015.02.097

Google Scholar

[163] F. Fujishiro, S. Takaichi, K. Hirakawa, T. Hashimoto, Analysis of oxidation decomposition reaction scheme and its kinetics of delafossite-type oxide CuLaO2 by thermogravimetry and high-temperature X-ray diffraction, J. Therm. Anal. Calorim, 2015, DOI 10. 1007/s10973-015-4723-9.

DOI: 10.1007/s10973-015-4723-9

Google Scholar

[164] R. Mo, Y.J. Liu, Synthesis and properties of delafossite CuAlO2 nanowires. J. Sol-Gel Sci. Technol. 57 (2011) 16–19.

DOI: 10.1007/s10971-010-2317-3

Google Scholar

[165] S. Mudenda, G. M. Kale, Y. R. S. Hara, Rapid synthesis and electrical transition in p-type delafossite CuAlO2, J. Mater. Chem. C. 2 (2014) 9233–9239.

DOI: 10.1039/c4tc01349b

Google Scholar

[166] D. Ursu, M. Miclau, Thermal stability of nanocrystalline 3R-CuCrO2, J Nanopart. Res. 16 (2014) 2160-2167.

DOI: 10.1007/s11051-013-2160-x

Google Scholar

[167] J. Pellicer-Porres, D. Martinez-Garcia, A. Segura, P. Rodriguez Hernandez, A. Munoz, J. C. Chervin, N. Garro, and D. Kim, Pressure and temperature dependence of the lattice dynamics of CuAlO2 investigated by Raman scattering experiments and ab initio calculations. Phys. Rev. B 74 (2006).

DOI: 10.1103/physrevb.74.184301

Google Scholar

[168] J. Pellicer-Porres, A. Segura, E. Mart inez, A. M. Saitta, A. Polian, J. C. Chervin, and B. Canny, Vibrational properties of delafossite CuGaO2 at ambient and high pressures. Phys. Rev. B 72 (2005) 064301.

DOI: 10.1103/physrevb.74.139902

Google Scholar

[169] W. M. Xu, G. Kh. Rozenberg, M. P. Pasternak, M. Kertzer, A. Kurnosov, L. S. Dubrovinsky, S. Pascarelli, M. Munoz, M. Vaccari, M. Hanfland, and R. Jeanloz, Pressure-induced Fe↔Cu cationic valence exchange and its structural consequences: High-pressure studies of delafossite CuFeO2. Phys. Rev. B 81 (2010).

DOI: 10.1103/physrevb.81.104110

Google Scholar

[170] T. R. Zhao, M. Hasegawa, H. Takei, T. Kondo, and T. Yagi, Jpn. J. Appl. Phys., Part 1 35 (1996) 3535.

Google Scholar

[171] A. Banerjee, K. K. Chattopadhyay, Nanostructured p-Type Semiconducting Transparent Oxides: Promising Materials for Nano-Active Devices and the Emerging Field of Transparent Nanoelectronics, Recent Patents on Nanotechnology. 2 (2008) 41-68.

DOI: 10.2174/187221008783478626

Google Scholar

[172] I. Hamada, H. Katayama-Yoshida, Energetics of native defects in CuAlO2, Physica B. 376–377 (2006) 808–811.

DOI: 10.1016/j.physb.2005.12.202

Google Scholar

[173] J. Wang, H. Huang, C. Liu, Z. Fu, X. Zhai, R. Peng, Y. Lu , Platinum-induced structural collapse in layered oxide polycrystalline films, Applied Physics Letters 106, 132903 (2015)doi: 10. 1063/1. 4915507.

DOI: 10.1063/1.4915507

Google Scholar

[174] A. P. Amrute, Z. Lodziana, C. Mondelli, F. Krumeich, J. Pérez-Ramírez, Solid-State Chemistry of Cuprous Delafossites: Synthesis and Stability Aspects, Chem. Mater. 25 (2013) 4423-4435.

DOI: 10.1021/cm402902m

Google Scholar

[175] A. Forticaux, S. Hacialioglu, J. P. DeGrave, R. Dziedzic, S. Jin, Three-Dimensional Mesoscale Heterostructures of ZnO Nanowire Arrays Epitaxially Grown on CuGaO2Nanoplates as Individual Diodes, ACS Nano. 7 (2013) 8224–8232.

DOI: 10.1021/nn4037078

Google Scholar

[176] C.Y. Yu, J.S. Park, H.G. Jung, K.Y. Chung, D. Aurbach, Y.K. Sun, S.T. Myung, NaCrO2 cathode for high-rate sodium-ion batteries, Energy Environ. Sci. 8 (2015) 2019-(2026).

DOI: 10.1039/c5ee00695c

Google Scholar

[177] M. Yang, A. Zakutayev, J. Vidal, X. Zhang, D. S. Ginley, F. J. DiSalvo, Strong optical absorption in CuTaN2 nitride delafossite, Energy Environ. Sci. 6 (2013) 2994–2999.

DOI: 10.1039/c3ee40621k

Google Scholar