Ultrafine-Grained Structure and Mechanical Properties of a High-Mn Twinning Induced Plasticity Steel

Article Preview

Abstract:

The influence of thermo-mechanical treatment consisting of cold rolling followed by recrystallization annealing on the grain size and mechanical properties of a high-Mn TWIP steel was studied. An Fe-23Mn-0.3C-1.5Al TWIP steel (wt. %) was subjected to extensive cold rolling with a reduction of 80% (true strain of ∼1.6) and then annealed in the temperature interval ranging from 400 to 900 °C during 20 minutes. Recovery processes took place below 500 °C, partial recrystallization was evident at ~550°C and fully recrystallized structure evolved after annealing at 600 °C and higher. The static recovery resulted in a slight decrease in the yield strength from 1400 MPa to 1250 MPa and the ultimate tensile strength from 1540 MPa to 1400 MPa whereas the total elongation of 4% did not changed. The recrystallization development led to a drastic drop of strength and an increase in ductility. The yield strength of 225 MPa, the ultimate tensile strength of 700 MPa and the total elongation of 79% was obtained after annealing at 900 °C. Correspondingly, the grain size increased from 0.2 μm to 6.2 μm with increase in anneal temperature from 550 to 900°C.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 838-839)

Pages:

392-397

Citation:

Online since:

January 2016

Export:

Price:

* - Corresponding Author

[1] B. C. De Cooman, Kwang-geun Chin and Jinkyung Kim, in: Marcello Chiaberge (ed. ), New Trends and Developments in Automotive System Engineering, InTech, 2011, pp.101-128.

Google Scholar

[2] A. Saeed-Akbari, L. Mosecker, A. Schwedt, W. Bleck, Characterization and Prediction of Flow Behavior in High-Manganese Twinning Induced Plasticity Steels: Part I. Mechanism Maps and Work-Hardening Behavior, Metall. Mater. Trans. A. 43 (2011).

DOI: 10.1007/s11661-011-0993-4

Google Scholar

[3] S. Allain, J. -P. Chateau, O. Bouaziz, S. Migot, N. Guelton, Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe-Mn-C alloys, Mater. Sci. Eng. A 387- 389 (2004) 158-162.

DOI: 10.1016/j.msea.2004.01.059

Google Scholar

[4] J. Nakano, P. J. Jacques, Effects of the thermodynamic parameters of the hcp phase on the stacking fault energy calculations in the Fe-Mn and Fe-Mn-C systems, Calphad 34 (2010) 167-175.

DOI: 10.1016/j.calphad.2010.02.001

Google Scholar

[5] C. Haase, L. A. Barrales-Mora, D. A. Molodov, G. Gottstein, Tailoring the Mechanical Properties of a Twinning-Induced Plasticity Steel by Retention of Deformation Twins During Heat Treatment, Metall. Mater. Trans. A 44A (2013) 4445-4449.

DOI: 10.1007/s11661-013-1935-0

Google Scholar

[6] O. Bouaziz, C.P. Scott, G. Petitgand, Nanostructured steel with high work-hardening by the exploitation of the thermal stability of mechanically induced twins, Scripta Mater. 60 (2009) 714- 716.

DOI: 10.1016/j.scriptamat.2009.01.004

Google Scholar

[7] C. Haase, L. A. Barrales-Mora, F. Roters, D. A. Molodov, G. Gottstein, Applying the texture analysis for optimizing thermomechanical treatment of high manganese twinning-induced plasticity steel, Acta Mater. 80 (2014) 327-340.

DOI: 10.1016/j.actamat.2014.07.068

Google Scholar

[8] S. Kang, Y. -S. Jung, J. -H. Jun, Y. -K. Lee, Effects of recrystallization annealing temperature on carbide precipitation, microstructure, and mechanical properties in Fe-18Mn-0. 6C-1. 5Al TWIP steel, Mater. Sci. Eng. A 527 (2010) 745-751.

DOI: 10.1016/j.msea.2009.08.048

Google Scholar

[9] R. Viscorova, J. Kroos, V. Flaxa, J. Wendelstorf, K.H. Spitzer, Deformation and mechanical properties of high manganese TRIP alloys, Proc. of IDDRG conference (2004) 261-269.

Google Scholar

[10] G. Dini, A. Najafizadeh, R. Ueji, S.M. Monir-Vaghefi, Improved tensile properties of partially recrystallized submicron grained TWIP steel, Mater. Lett. 64 (2010) 15-18.

DOI: 10.1016/j.matlet.2009.09.057

Google Scholar

[11] P. Kusakin, A. Belyakov, C. Haase, R. Kaibyshev, D. Molodov, Microstructure evolution and strengthening mechanisms of Fe-23Mn-0. 3C-1. 5AlTWIP steel during cold rolling, Mater. Sci. Eng. A 617 (2014) 52-60.

DOI: 10.1016/j.msea.2014.08.051

Google Scholar

[12] O. Bouaziz, S. Allain, C.P. Scott, P. Cugy, D. Barbier, High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationship, Curr. Opin. in Solid State and Mater. Sci. 15 (2001) 141-168.

DOI: 10.1016/j.cossms.2011.04.002

Google Scholar

[13] S. Takaki, K. Kawasaki, Y. Kimura, Mechanical properties of ultra fine grained steels, J. Mater. Proc. Technol. 117 (2001) 359-363.

DOI: 10.1016/s0924-0136(01)00797-x

Google Scholar

[14] T. Sakai, H. Miura, A. Belyakov, K. Tsuzaki, On Annealing Mechanisms Operating in Ultra Fine Grained Alloys, in M. Zehetbauer and R. Z. Valiev (eds. ), Nanomaterials by Severe Plastic Deformation, Wiley-VCH Verlag GmbH & Co. KGaA, 2004, 780-785.

DOI: 10.1002/3527602461.ch14d

Google Scholar

[15] S. Zherebtsov, G. Dyakonov, A. Salem, V. Sokolenko, G. Salishchev, S. Semiatin, Formation of nanostructures in commerial-purity titanium via cryorolling, Acta Mater. 61 (2013) 1167-1178.

DOI: 10.1016/j.actamat.2012.10.026

Google Scholar

[16] E. Artz, Size effect in materials due to microstructural and dimensional constraints: a comparative review, Acta Mater. 46 (1998) 5611-5626.

DOI: 10.1016/s1359-6454(98)00231-6

Google Scholar