Electrochemical Depolymerization of Chitosans Using the IrO2 Electrode with Interlayers as Anode

Article Preview

Abstract:

A IrO2 anode on titanium substrate with iridium–titanium oxide interlayer (Ti/ TiO2-IrOx/IrO2) was prepared through repeating brushing-drying-calcinating procedure. The TiO2-IrOx interlayer was prepared using a mixture of TiN nanoparticles and H2IrCl6 solution as the coating solution. The Ti/TiO2-IrOx/IrO2 had high catalytic activity, good catalytic stability and long service life. It was suitable for the application of electrochemical depolymerization of chitosans. The experimental results showed that chitosan could be effectively degraded using the Ti/ TiO2-IrOx/IrO2 as the anode. The influence of the current density on the degradation of chitosans was complicated. The power supply type obviously influenced on the degradation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

281-286

Citation:

Online since:

March 2016

Export:

Price:

* - Corresponding Author

[1] V. K. Mourya, N. N. Inamdar,Y. M. Choudhari. Chitooligosaccharides: Synthesis, Characterization and Applications. Polymer Science, Ser. A, 53(2011) 583-612.

DOI: 10.1134/s0965545x11070066

Google Scholar

[2] K. V. Harish Prashanth, R. N. Tharanathan. Chitin/chitosan: modifications and their unlimited application potential-an overview. Trends in Food Science & Technology, 18(2007)117-131.

DOI: 10.1016/j.tifs.2006.10.022

Google Scholar

[3] Q. Y. Cai, Z. M. Gu, Y. Chen, W. Q. Han, T. M. Fu, H. C. Song, F. S. Li. Degradation of chitosan by an electrochemical process. Carbohydrate Polymers, 79(2010)783-785.

DOI: 10.1016/j.carbpol.2009.08.022

Google Scholar

[4] H. Emna, S. C. Elaoud, S. Youssef, A. Ridha. Electrochemical degradation of waters containing O-Toluidine on PbO2 and BDD anodes. J Hazard Mater, 58(2009)1-6.

DOI: 10.1016/j.jhazmat.2009.05.058

Google Scholar

[5] F. J. Rivas, S. T. Kolaczkowski, F. J. Beltran, D. B. Mclurgh. Hydrogen peroxidepromoted wet air oxidation of phenol: influence of operating conditions and homogeneous metal catalyst. J. Chem. Technol. Biotechnol., 74(1999)3980-3988.

DOI: 10.1002/(sici)1097-4660(199905)74:5<390::aid-jctb64>3.0.co;2-g

Google Scholar

[6] Y. J. Feng, X. Y. Li. Electro-catalytic oxidation of phenol on several metal-oxide electrodes in aqueous solution. Water Res., 37(2003)2399-2407.

DOI: 10.1016/s0043-1354(03)00026-5

Google Scholar

[7] Q. Y. Cai, Z. M. Gu, T. M. Fu, Y. Liu, H. C. Song, F.S. Li. Kinetic study of chitosan degradation by an electrochemical process, Polym. Bull., 67(2011)571-582.

DOI: 10.1007/s00289-010-0398-3

Google Scholar

[8] H. B. Xu, Y. H. Lu, C. H. Li, J. Z. Hu. A novel IrO2 electrode with iridium–titanium oxide interlayers from a mixture of TiN nanoparticle and H2IrCl6 solution. J. Appl. Electrochem., 40(2010) 719-727.

DOI: 10.1007/s10800-009-0049-2

Google Scholar

[9] W. Wang, S. Q. Bo, S. Q. Li, W. Qin, Determination of the Mark-Houwink equation for chitosans with different degrees of deacetylation. International Journal of Biological Macromolecules, 13(1991)281-285.

DOI: 10.1016/0141-8130(91)90027-r

Google Scholar