Preparation and Characterization of a Novel Anti-Dripping Flame Retardant PET/Phosphate Glass Nanocomposite

Article Preview

Abstract:

In the present study, the effect of phosphorus flame retardation (FR) agent, 2-carboxyl ethyl (phenyl) phosphinic acid (CEPPA), incorporating phosphate glass (Pglass) on the flame retardation and melt dripping behavior of poly (ethylene terephthalate) (PET) has been investigated. The Pglass/FR-PET nanocomposites (P/FR-PET) were prepared by melt blending. The morphology, thermal degradation behavior and flamability of the nanocomposites were investigated by means of scanning electron microscopy (SEM), thermogravimetric analysis (TGA), limiting oxygen index test (LOI) and vertical combustion test. SEM micrographs showed that as the increasing of Pglass contents the morphologies of Pglass in the FR-PET matrix changed from nanoparticles (50 nm to 100 nm) to network structures. The thermal stability of nanocomposites at high temperature increased with the addition of Pglass contents. Meanwhile, the LOI values of the nanocomposites increased from 33.6 for neat FR-PET to 36.1 for 50% P/FR-PET nanocomposites. The vertical combustion test revealed that the P/FR-PET nanocomposites had excellent anti-dripping flame retardant property which can achieve UL-94 V-0 level. The formation of the Pglass network-structured protective layer, which acted as a supporting and heat shield layer, must be crucial for the large reduction in melt dripping. In a word, the experimental results showed that the CEPPA in combination with Pglass has excellent flame retardation and anti-dripping effect.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

82-88

Citation:

Online since:

March 2016

Export:

Price:

[1] R.F. Rosu, R.A. Shanks, S.N. Bhattacharya, Shear rheology and thermal properties of linear and branched poly (ethylene terephthalate) blends, Polymer 40(1999) 5891-5898.

DOI: 10.1016/s0032-3861(98)00814-3

Google Scholar

[2] D.Y. Wang, X.G. Ge, Y.Z. Wang, C. Wang, M.H. Qu, Q. Zhou, A novel phosphorus-containing poly(ethylene terephthalate) nanocomposite with both flame retardancy and anti-dripping effects, Macromol. Mater. Eng. 291(2006) 638-645.

DOI: 10.1002/mame.200600017

Google Scholar

[3] D.Y. Wang, X.Q. Liu, J.S. Wang, Y.Z. Wang, A.A. Stec, T.R. Hull, Preparation and characterisation of a novel fire retardant PET/α-zirconium phosphate nanocomposite, Polym. Degrad. Stab. 94(2009) 544-549.

DOI: 10.1016/j.polymdegradstab.2009.01.018

Google Scholar

[4] Q.L. Li, X.L. Wang, D.Y. Wang, Y.Z. Wang, X.N. Feng, G.H. Zheng, Durable flame retardant finishing of PET/cotton blends using a novel PVA-based phosphorus-nitrogen polymer, J. Appl. Polym. Sci. 122(2011) 342-353.

DOI: 10.1002/app.34182

Google Scholar

[5] Y. Deng, Y.Z. Wang, D.M. Ban, X.H. Liu, Q. Zhou, Burning behavior and pyrolysis products of flame-retardant PET containing sulfur-containing aryl polyphosphonate, J. Anal. Appl. Pyrol. 76(2006) 198-202.

DOI: 10.1016/j.jaap.2005.11.002

Google Scholar

[6] Y. Deng, C.S. Zhao, Y.Z. Wang, Effects of phosphorus-containing thermotropic liquid crystal copolyester on pyrolysis of PET and its flame retardant mechanism, Polym. Degrad. Stab. 93(2008) 2066-(2070).

DOI: 10.1016/j.polymdegradstab.2008.02.022

Google Scholar

[7] Y.Z. Wang, C.Y. Zheng, D.C. Wu, Flame-retardant action of polysulfonyldiphenylene phenylphosphonate on PET, Acta Polym. Sin. 4(1996) 439-446.

Google Scholar

[8] M. Si, V. Zaitsev, M. Goldman, A. Frenkel, D.G. Peiffer, E. Weil, J.C. Sokolov, M.H. Rafailovich, Self-extinguishing polymer/organoclay nanocomposites, Polym. Degrad. Stab. 92(2007) 86-93.

DOI: 10.1016/j.polymdegradstab.2006.08.023

Google Scholar

[9] S.M. Li, H. Yuan, T. Yu, W.Z. Yuan, J. Ren, Flame-retardancy and anti-dripping effects of intumescent flame retardant incorporating montmorillonite on poly(lactic acid), Polym. Adv. Technol. 20(2009) 1114-1120.

DOI: 10.1002/pat.1372

Google Scholar

[10] S.S. Ray, M. Okamoto, Polymer/layered silicate nanocomposites: a review from preparation to processing, Prog. Polym. Sci. 28(2003) 1539-1641.

DOI: 10.1016/j.progpolymsci.2003.08.002

Google Scholar

[11] J.U. Otaigbe, G.H. Beall, Inorganic phosphate glasses as polymers, Trend. Polym. Sci. 5(1997) 369-379.

Google Scholar

[12] K. Urman, J.U. Otaigbe, New phosphate glass/polymer hybrids—current status and future prospects, Prog. Polym. Sci. 32(2007) 1462-1498.

DOI: 10.1016/j.progpolymsci.2007.07.006

Google Scholar

[13] A. Rawal, X.Q. Kong, Y. Meng, J.U. Otaigbe, K. Schmidt-Rohr, Reduced crystallinity and mobility of nylon-6 confined near the organic–inorganic interface in a phosphate glass-rich nanocomposite detected by 1H–13C NMR, Macromolecules 44(2011).

DOI: 10.1021/ma201756q

Google Scholar

[14] Y.C. Fang, M. Herbert, D.A. Schiraldi, C.J. Ellison, Tin fluorophosphate nonwovens by melt state centrifugal Forcespinning, J. Mater. Sci. 49(2014) 8252-8260.

DOI: 10.1007/s10853-014-8534-3

Google Scholar

[15] H.C. Liu, J. H Ma, J.H. Gong, X. Jian, The effect of Pglass state on the non-isothermal cold and melt crystallization processes of PET matrix, Thermochimica Acta 613(2015) 1-8.

DOI: 10.1016/j.tca.2015.05.014

Google Scholar

[16] J.W. Lim, S.W. Yung, R.K. Brow, Properties and structure of binary tin phosphate glasses, J. Non-Cryst. Solid. 357(2011) 2690-2694.

DOI: 10.1016/j.jnoncrysol.2010.12.061

Google Scholar

[17] M.G. Icduygu, L. Aktas, M.C. Altan, Characterization of composite tiles fabricated from poly(ethylene terephthalate) and micromarble particles reinforced by glass fiber mats, Polym. Compos. 33(2012) 1921-(1932).

DOI: 10.1002/pc.22332

Google Scholar

[18] H.C. Liu, J.H. Ma, J.H. Gong, X. Jian, The structure and properties of SnF2–SnO–P2O5 glasses, J. Non-Cryst. Solid. 419(2015) 92-96.

DOI: 10.1016/j.jnoncrysol.2015.03.040

Google Scholar

[19] S.B. Adalja, J.U. Otaigbe, J. Thalacker, Glass-polymer melt hybrids. I: Viscoelastic properties of novel affordable organic-inorganic polymer hybrids, Polym. Eng. Sci. 41(2001) 1055-1067.

DOI: 10.1002/pen.10806

Google Scholar

[20] K. Urman, D. Iverson, J.U. Otaigbe, Study of the effects of melt blending speed on the structure and properties of phosphate glass/polyamide 12 hybrid materials, J. Appl. Polym. Sci. 105(2007) 1297-1308.

DOI: 10.1002/app.25266

Google Scholar

[21] C.S. Wang, J.Y. Shieh, Y.M. Sun, Phosphorus containing PET and PEN by direct esterification, Eur. Polym. J. 35(1999) 1465-1472.

DOI: 10.1016/s0014-3057(98)00234-1

Google Scholar

[22] P.Y. Shih, Effect of melting time on the properties of Sn–P–O–Cl glasses, J. Mater. Sci. Lett. 21(2002) 1153-1155.

Google Scholar

[23] J. Zhu, F.M. Uhl, A.B. Morgan, C.A. Wilkie, Studies on the mechanism by which the formation of nanocomposites enhances thermal stability, Chem. Mater. 13(2001) 4649-4654.

DOI: 10.1021/cm010451y

Google Scholar

[24] D. W van Krevelen, Some basic aspects of flame resistance of polymeric materials, Polymer 16(1975) 615-620.

DOI: 10.1016/0032-3861(75)90157-3

Google Scholar

[25] R. Yang, L. Chen, W.Q. Zhang, H.B. Chen, Y.Z. Wang, In situ reinforced and flame-retarded polycarbonate by a novel phosphorus-containing thermotropic liquid crystalline copolyester, Polymer 52(2011) 4150-4157.

DOI: 10.1016/j.polymer.2011.06.047

Google Scholar

[26] S.W. Zhu, W.F. Shi, Thermal degradation of a new flame retardant phosphate methacrylate polymer, Polym. Degrad. Stab. 80(2003) 217-222.

DOI: 10.1016/s0141-3910(02)00401-9

Google Scholar