Effect of Dielectric Barrier Discharge Plasma Surface Treatment on the Properties of Pineapple Leaf Fiber Reinforced Poly(Lactic Acid) Biocomposites

Article Preview

Abstract:

Plant source-based stiff fiber reinforced bioplastics based on natural plant derived substances show promise of providing degradation back into the environment when they are no longer needed. These "green" composites have enormous potential to replace materials originated from non-renewable resources and may turn out to be one of the material revolutions of this century. Unlike synthetic composites, "green" composites are renewable, carbon neutral, biodegradable, non-petroleum based, and have low environmental, human health and safety risks. In this paper effect of pineapple leaf fiber (PALF) length and physical surface treatment on to the properties of the composites was investigated at 10% wt. loading. In order to improve compatibility and composite properties of PALF/poly (lactic acid) composites without any hazardous chemicals that are usually involved in the process, dielectric barrier discharge (DBD) plasma surface treatment was conducted for fiber modification. Therefore more environmentally friendlier and industrially scalable technology was implemented in processing of composites by twin screw extrusion and injection moulding. Resulted composites were characterized by means of scanning electron microscopy (SEM), thermal and mechanical testing.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

156-165

Citation:

Online since:

August 2016

Export:

Price:

* - Corresponding Author

[1] R. Stewart, Automotive composites offer lighter solutions, Reinf. Plast., vol. 54, no. 2, (2010) 22–28.

Google Scholar

[2] G. Marsh, Next step for automotive materials, Mater. Today, vol. 6, no. 4, (2003), 36–43.

Google Scholar

[3] J. Rybicka, A. Tiwari, and G. A. Leeke, Technology readiness level assessment of composites recycling technologies, J. Clean. Prod., vol. 112, Part 1, (2016), 1001–1012.

DOI: 10.1016/j.jclepro.2015.08.104

Google Scholar

[4] G. Oliveux, L. O. Dandy, and G. A. Leeke, Current status of recycling of fibre reinforced polymers: Review of technologies, reuse and resulting properties, Prog. Mater. Sci., vol. 72, (2015), 61–99.

DOI: 10.1016/j.pmatsci.2015.01.004

Google Scholar

[5] J. P. Snudden, C. Ward, and K. Potter, Reusing automotive composites production waste, Reinf. Plast., vol. 58, no. 6, (2014), 20–27.

DOI: 10.1016/s0034-3617(14)70246-2

Google Scholar

[6] A. K. Mohanty, M. Misra, and L. T. Drzal, Natural fibers, biopolymers, and biocomposites. CRC Press, (2005).

DOI: 10.1201/9780203508206.ch1

Google Scholar

[7] R. J. Moon, A. Martini, J. Nairn, J. Simonsen, and J. Youngblood, Cellulose nanomaterials review: structure, properties and nanocomposites, Chem. Soc. Rev., vol. 40, no. 7, (2011), 3941–3994.

DOI: 10.1039/c0cs00108b

Google Scholar

[8] A. K. Mohanty, M. Misra, and G. Hinrichsen, Biofibres, biodegradable polymers and biocomposites: An overview, Macromol. Mater. Eng., vol. 276–277, no. 1, (2000), 1–24.

DOI: 10.1002/(sici)1439-2054(20000301)276:1<1::aid-mame1>3.0.co;2-w

Google Scholar

[9] S. Kalia, A. Dufresne, B. M. Cherian, B. S. Kaith, L. Rous, J. Njuguna, E. Nassiopoulos, S. Kalia, A. Dufresne, B. M. Cherian, B. S. Kaith, L. Rous, J. Njuguna, and E. Nassiopoulos, Cellulose-Based Bio- and Nanocomposites: A Review, Int. J. Polym. Sci., vol. 2011, (2011).

DOI: 10.1155/2011/837875

Google Scholar

[10] S. Kalia, B. Kaith, and I. Kaur, Cellulose fibers: bio-and nano-polymer composites: green chemistry and technology, Springer, (2011).

DOI: 10.1007/978-3-642-17370-7

Google Scholar

[11] G. Mehta, L. T. Drzal, A. K. Mohanty, and M. Misra, Effect of fiber surface treatment on the properties of biocomposites from nonwoven industrial hemp fiber mats and unsaturated polyester resin, J. Appl. Polym. Sci., vol. 99, no. 3, (2006).

DOI: 10.1002/app.22620

Google Scholar

[12] V. Tserki, N. E. Zafeiropoulos, F. Simon, and C. Panayiotou, A study of the effect of acetylation and propionylation surface treatments on natural fibres, Compos. Part Appl. Sci. Manuf., vol. 36, no. 8, (2005), 1110–1118.

DOI: 10.1016/j.compositesa.2005.01.004

Google Scholar

[13] S. Mishra, J. B. Naik, and Y. P. Patil, The compatibilising effect of maleic anhydride on swelling and mechanical properties of plant-fiber-reinforced novolac composites, Compos. Sci. Technol., vol. 60, no. 9, (2000), 1729–1735.

DOI: 10.1016/s0266-3538(00)00056-7

Google Scholar

[14] S. Kalia, K. Thakur, A. Celli, M. A. Kiechel, and C. L. Schauer, Surface modification of plant fibers using environment friendly methods for their application in polymer composites, textile industry and antimicrobial activities: A review, J. Environ. Chem. Eng., vol. 1, no. 3, (2013).

DOI: 10.1016/j.jece.2013.04.009

Google Scholar

[15] S. Mishra, A. K. Mohanty, L. T. Drzal, M. Misra, and G. Hinrichsen, A Review on Pineapple Leaf Fibers, Sisal Fibers and Their Biocomposites, Macromol. Mater. Eng., vol. 289, no. 11, (2004), 955–974.

DOI: 10.1002/mame.200400132

Google Scholar

[16] M. Asim, K. Abdan, M. Jawaid, M. Nasir, Z. Dashtizadeh, M. R. Ishak, M. E. Hoque, M. Asim, K. Abdan, M. Jawaid, M. Nasir, Z. Dashtizadeh, M. R. Ishak, and M. E. Hoque, A Review on Pineapple Leaves Fibre and Its Composites, A Review on Pineapple Leaves Fibre and Its Composites, Int. J. Polym. Sci. Int. J. Polym. Sci., vol. 2015, (2015).

DOI: 10.1155/2015/950567

Google Scholar

[17] J. George, S. Bhagawan, N. Prabhakaran, and S. Thomas, Short pineapple-leaf-fiber-reinforced low-density polyethylene composites, J. Appl. Polym. Sci., vol. 57, no. 7, (1995), 843–854.

DOI: 10.1002/app.1995.070570708

Google Scholar

[18] B. Vinod and L. Sudev, Effect of fiber length on the tensile properties of PALF reinforced bisphenol composites, J Eng Bus Enterp Appl IJEBEA, vol. 5, no. 2, (2013), 158–162.

Google Scholar

[19] E. Lizundia, J. L. Vilas, and L. M. León, Crystallization, structural relaxation and thermal degradation in Poly(l-lactide)/cellulose nanocrystal renewable nanocomposites, Carbohydr. Polym., vol. 123, (2015), 256–265.

DOI: 10.1016/j.carbpol.2015.01.054

Google Scholar

[20] S. Kaewpirom and C. Worrarat, Preparation and properties of pineapple leaf fiber reinforced poly (lactic acid) green composites, Fibers Polym., vol. 15, no. 7, (2014), 1469–1477.

DOI: 10.1007/s12221-014-1469-0

Google Scholar