The Effect of Cryorolling on the Microstructure of Al-Cu-Mg Alloy

Article Preview

Abstract:

A precipitation hardenable Al-Cu-Mg alloy was cryorolled with liquid nitrogen followed solution treatment and then aged at 170 ̊C for different time. The microstructure was characterized by optical microscopy (OM) and transmission electron microscopy (TEM). Hardness and tensile strength were also tested. The dislocation loops in the cryorolled alloy are more than the room temperature rolled alloy. Meanwhile the hardness, yield strength and tensile strength are larger than the room temperature rolled alloy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

188-193

Citation:

Online since:

November 2016

Export:

Price:

* - Corresponding Author

[1] Y.B. Lee, D.H. Shin, K.T. Park, W.J. Nam, Effect of annealing temperature on microstructures and mechanical properties of a 5083 Al alloy deformed at cryogenic temperature, Scripta Mater. 51(2004) 355-359.

DOI: 10.1016/j.scriptamat.2004.02.037

Google Scholar

[2] T. Shanmugasundaram, B.S. Murty, V.S. Sarma, Development of ultrafine grained high strength Al-Cu alloy by cryorolling, Scripta Mater. 54 (2006)2013–(2017).

DOI: 10.1016/j.scriptamat.2006.03.012

Google Scholar

[3] S.K. Panigrahi, R. Jayaganthan, Effect of ageing on microstructure and mechanical properties of bulk, cryorolled, and room temperature rolled Al 7075 alloy, Journal of Alloys and Compounds. 509(2011) 9609-9616.

DOI: 10.1016/j.jallcom.2011.07.028

Google Scholar

[4] Y.M. Wang, M.W. Chen, F.H. Zhou, E. Ma, High Tensile ductility in a nanostructure metal, Nature. 419 (2002) 912-917.

Google Scholar

[5] N Rangaraju, T Raghuram, B.V. Krishna, K.P. Rao, P Venugopal, Effect of cryorolling and annealing on microstructure and properties of commercially pure aluminum, Mater Sci Eng A. 398(2005)246-251.

DOI: 10.1016/j.msea.2005.03.026

Google Scholar

[6] S.K. Panigrahi, R. Jayaganthan, A study on the mechanical properties of cryorolled Al-Mg-Si alloy, Materials Science and Engineering A. 480 (2008) 299-305.

DOI: 10.1016/j.msea.2007.07.024

Google Scholar

[7] S.K. Panigrahi, R. Jayaganthan, V. Chawla, Effect of cryorolling on microstructure of Al-Mg-Si alloy, Materials Letters. 62 (2008) 2626-2629.

DOI: 10.1016/j.matlet.2008.01.003

Google Scholar

[8] S.K. Panigrahi, R. Jayaganthan, V. Pancholi, Manoj Gupta, A DSC study on the precipitation kinetics of cryorolled Al 6063 alloy, Materials Chemistry and Physics. 122 (2010) 188-193.

DOI: 10.1016/j.matchemphys.2010.02.032

Google Scholar

[9] S.K. Panigrahi,R. Jayaganthan, Development of ultrafine-grained Al 6063 alloy by cryorolling with the optimized initial heat treatment conditions, Materials and Design. 32 (2011) 2172-2180.

DOI: 10.1016/j.matdes.2010.11.027

Google Scholar

[10] S.K. Panigrahi,R. Jayaganthan, Effect of rolling temperature on microstructure and mechanical properties of 6063 Al alloy, Materials Science and Engineering A. 492 (2008) 300-305.

DOI: 10.1016/j.msea.2008.03.029

Google Scholar

[11] S.K. Panigrahi,R. Jayaganthan, V. Pancholi, Effect of plastic deformation conditions on microstructural characteristics and mechanical properties of Al 6063 alloy, Materials and Design. 30 (2009) 1894-(1901).

DOI: 10.1016/j.matdes.2008.09.022

Google Scholar

[12] H.L. Yu, A. K. Tieu, C. Lu, X.H. Liu, A. Godbole, C. Kong, Mechanical properties of Al–Mg–Si alloy sheets produced using asymmetric cryorolling and ageing treatment, Materials Science and Engineering A. 568 (2013) 212-218.

DOI: 10.1016/j.msea.2013.01.048

Google Scholar

[13] S.K. Panigrahi, R. Jayaganthan, Influence of solutes and second phase particles on work hardening behavior of Al 6063 alloy processed by cryorolling, Materials Science and Engineering A. 528 (2011) 3147-3160.

DOI: 10.1016/j.msea.2011.01.010

Google Scholar

[14] K. C. Sekhar , R. Narayanasamy, K. Venkateswarlu, Formability, fracture and void coalescence analysis of a cryorolled Al-Mg-Si alloy, Materials and Design. 57 (2014) 351-359.

DOI: 10.1016/j.matdes.2013.12.077

Google Scholar

[15] D. Singh, P. Nageswara Rao, R. Jayaganthan, Effect of deformation temperature on mechanical properties of ultrafine grained Al-Mg alloys processed by rolling, Materials and Design. 50 (2013) 646-655.

DOI: 10.1016/j.matdes.2013.02.068

Google Scholar

[16] S. K. Panigrahi, R. Jayaganthan, Development of ultrafine grained high strength age hardenable Al 7075 alloy by cryorolling, Materials and Design. 32 (2011) 3150-3160.

DOI: 10.1016/j.matdes.2011.02.051

Google Scholar

[17] R. Jayaganthan, H.G. Brokmeier, B. Schwebke, S.K. Panigrahi, Microstructure and texture evolution in cryorolled Al 7075 alloy, Journal of Alloys and Compounds. 496 (2010) 183-188.

DOI: 10.1016/j.jallcom.2010.02.111

Google Scholar

[18] Y.J. Lang, H. Cui, Y.H. Cai, J.S. Zhang, Effect of strain-modified particles on the formation of fined grains and the properties of AA7050 alloy, Materials and Design. 39 (2012) 220-225.

DOI: 10.1016/j.matdes.2012.02.005

Google Scholar

[19] D. C. C. Magalhães, M. F. Hupalo O.M. Cintho, Natural aging behavior of AA7050 Al alloy after cryogenic rolling, Materials Science and Engineering A. 593(2014)1-7.

DOI: 10.1016/j.msea.2013.11.017

Google Scholar

[20] K. C. Sekhar, R. Narayanasamy, K. Velmanirajan, Experimental investigations on microstructure and formability of cryorolled AA 5052 sheets, Materials and Design. 53 (2014) 1064-1070.

DOI: 10.1016/j.matdes.2013.08.008

Google Scholar

[21] K.H. Westmacotdt, D. Hull, R.S. Barnes, Dislocation sources in quenched aluminium-based alloys, Philosophical Magazine. 45(1959) 1089-1092.

DOI: 10.1080/14786435908238290

Google Scholar