Unraveling the Age Hardening Response in U-Nb Alloys

Article Preview

Abstract:

Complicating factors that have stymied understanding of uranium-niobium’s aging response are briefly reviewed, including (1) niobium inhomogeneity, (2) machining damage effects on tensile properties, (3) early-time transients of ductility increase, and (4) the variety of phase transformations. A simple Logistic-Arrhenius model was applied to predict yield and ultimate tensile strengths and tensile elongation of U-4Nb as a function of thermal age. Fits to each model yielded an apparent activation energy that was compared with phase transformation mechanisms.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

665-670

Citation:

Online since:

November 2016

Export:

Price:

* - Corresponding Author

[1] K.H. Eckelmeyer, A.D. Romig, Jr., L.J. Weirick, The Effect of Quench Rate on the Microstructure, Mechanical Properties, and Corrosion Behavior of U-6 Wt Pct Nb, Metall. Trans. A, 15A (1984) 1319-1330.

DOI: 10.1007/bf02648560

Google Scholar

[2] R.E. Hackenberg, A Compilation of Tensile Data for Quenched and Aged Uranium-Niobium Alloys, LANL report LA-xxxxx (in press, 2016).

DOI: 10.2172/1809254

Google Scholar

[3] A.J. Clarke, R.D. Field, R.J. McCabe, C.M. Cady, R.E. Hackenberg, D.J. Thoma, EBSD and FIB/TEM Examination of Shape Memory Effect Deformation Structures in U-14 at. % Nb, Acta Mater., 56 (2008) 2638-2648.

DOI: 10.1016/j.actamat.2008.02.008

Google Scholar

[4] A.J. Clarke, R.D. Field, P.O. Dickerson, R.J. McCabe, J.G. Swadener, R.E. Hackenberg, D.J. Thoma, A Microcompression Study of Shape-Memory Deformation in U-13 at. % Nb, Scripta Mater., 60 (2009) 890-892.

DOI: 10.1016/j.scriptamat.2009.02.003

Google Scholar

[5] A.J. Clarke, R.D. Field, R.E. Hackenberg, D.J. Thoma, D.W. Brown, D.F. Teter, M.K. Miller, K.F. Russell, D.V. Edmonds, G. Beverini, Low Temperature Age-Hardening in U-13 At. %Nb: An Assessment of Chemical Redistribution Mechanisms, J. Nucl. Mater., 393 (2009).

DOI: 10.1016/j.jnucmat.2009.06.025

Google Scholar

[6] R.A. Vandermeer, Phase Transformations in a Uranium+14 At. % Niobium Alloy, Acta Metall., 28 (1980) 383-393.

DOI: 10.1016/0001-6160(80)90173-x

Google Scholar

[7] G. Beverini, D.V. Edmonds, An APFIM Study of the Ageing Behaviour of U-6. 0 wt. % Nb, J. Physique (Coll. ), 50-C8 (1989) 429-434.

DOI: 10.1051/jphyscol:1989873

Google Scholar

[8] B. Djuric, Decomposition of Gamma Phase in a Uranium-9. 5 wt % Niobium Alloy, J. Nucl. Mater., 44 (1972) 207-214.

Google Scholar

[9] K.H. Eckelmeyer, Aging Phenomena in Dilute Uranium Alloys, in: J.J. Burke et al. (Eds. ), Physical Metallurgy of Uranium Alloys, Brook Hill, Chestnut Hill, MA, 1976, pp.463-509.

Google Scholar

[10] R.E. Hackenberg, H.M. Volz, P.A. Papin, A.M. Kelly, R.T. Forsyth, T.J. Tucker, K.D. Clarke, Kinetics of Lamellar Decomposition Reactions in U-Nb Alloys, Solid State Phenomena, 172-174 (2011) 555-560.

DOI: 10.4028/www.scientific.net/ssp.172-174.555

Google Scholar

[11] R.E. Hackenberg, M.G. Emigh, A.M. Kelly, P.A. Papin, R.T. Forsyth, T.J. Tucker, K.D. Clarke, The Surprising Occurrence of Non-Steady-State Growth of Divergent Lamellar Decomposition Products in Uranium-Niobium Alloys: A Preliminary Report, LANL report LA-UR-12-25218 (2012).

DOI: 10.2172/1052805

Google Scholar

[12] R.E. Hackenberg, R.M. Aikin, Jr., A.M. Kelly, R.T. Forsyth, P.A. Papin, D.J. Alexander, T.J. Tucker, W.L. Hults, M.F. Lopez, Microstructure and Mechanical Response of U-6Nb and U-8Nb in Gamma Quenched and Long-Term-Aged Conditions, LANL Report LA-xxxxx (in press, 2016).

DOI: 10.2172/1810412

Google Scholar

[13] E.A. Brandes, G.B. Brook (Eds. ), Smithells Metals Reference Book, Butterworth-Heinemann, Oxford, (1998).

Google Scholar