Morphology and Microstructure of Tungsten Films by Magnetron Sputtering

Article Preview

Abstract:

In this work, tungsten thin films were deposited on different substrates by magnetron sputtering and some of the films were then annealed at 1000°C for 1 hour in order to investigate the influence of different processing parameters on morphology and microstructure of films. Scanning electron microscope and x-ray diffraction were used to detect the morphology and microstructure of films. Under the same conditions, the thin films on different substrates showed different preferred grain orientations although the morphologies were similar. After thermal treatment, the morphology of films changed significantly and the total stress parallel to film surfaces dropped off sharply.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

416-423

Citation:

Online since:

February 2018

Export:

Price:

* - Corresponding Author

[1] S. Vepreck, S. Reiprich, A concept for the design of novel superhard coatings, Thin Solid Films 268 (1995) 64-71.

DOI: 10.1016/0040-6090(95)06695-0

Google Scholar

[2] P. Goudeau, K. F. Badawi, A. Naudon, et al. Residual stress and microstructure of Cu/W multilayers, MRS Online Proceedings Library Archive, 308 (1993).

DOI: 10.1557/proc-308-713

Google Scholar

[3] M. Rieth, Dudarev S L, De Vicente S M G, et al. Recent progress in research on tungsten materials for nuclear fusion applications in Europe, J. Nucl. Mater. 432 (2013) 482-500.

Google Scholar

[4] V. Philipps, Tungsten as material for plasma-facing components in fusion devices, J. Nucl. Mater. 415 (2011) S2-S9.

DOI: 10.1016/j.jnucmat.2011.01.110

Google Scholar

[5] R. Neu, R. Dux, A. Kallenbach, et al., Tungsten: an option for divertor and main chamber plasma facing components in future fusion devices, Nuclear Fusion 45 (2005) 209-218.

DOI: 10.1088/0029-5515/45/3/007

Google Scholar

[6] Oliver B. M, Causey R. A, Maloy S. A, Deuterium retention and release from highly irradiated annealed tungsten after exposure to a deuterium DC glow discharge, J. Nucl. Mater. 329 (2004) 977.

DOI: 10.1016/j.jnucmat.2004.04.067

Google Scholar

[7] Ou X, Anwand W, Kögler R, Zhou H and Richter A, The role of helium implantation induced vacancy defect on hardening of tungsten, J. Appl. Phys. 115 (2014) 123521.

DOI: 10.1063/1.4870234

Google Scholar

[8] V. Kh. Alimov, W.M. Shu, J. Roth, et al., Temperature dependence of surface topography and deuterium retention in tungsten exposed to low-energy, high-flux D plasma, J. Nucl. Mater. 417 (2011) 572.

DOI: 10.1016/j.jnucmat.2011.01.088

Google Scholar

[9] W.M. Shu, High-dome blisters formed by deuterium-induced local superplasticit, Appl. Phys. Lett. 92 (2008) 211904.

DOI: 10.1063/1.2937139

Google Scholar

[10] W.M. Shu, E. Wakai, T. Yamanishi, Blister bursting and deuterium bursting release from tungsten exposed to high fluences of high flux and low energy deuterium plasma, Nuclear Fusion 47 (2007) 201.

DOI: 10.1088/0029-5515/47/3/006

Google Scholar

[11] M.R. Gilbert, S.L. Dudarev, S. Zheng, et al., An integrated model for materials in a fusion power plant: transmutation, gas production, and helium embrittlement under neutron irradiation, Nuclear Fusion 52 (2012) 083019.

DOI: 10.1088/0029-5515/52/8/083019

Google Scholar

[12] P.E. Lhuillier, P. Desgardin, et al., Helium retention and early stages of helium-vacancy complexes formation in low energy helium-implanted tungsten, J. Nucl. Mater. 433 (2013) 305-313.

DOI: 10.1016/j.jnucmat.2012.09.001

Google Scholar

[13] P.E. Lhuillier, T. Belhabib, P. Desgardin, et al., Trapping and release of helium in tungsten, Journal of Nuclear Materials 416 (2011) 13-17.

DOI: 10.1016/j.jnucmat.2010.12.042

Google Scholar

[14] M. Miyamoto, D. Nishijima, et al., Observations of suppressed retention and blistering for tungsten exposed to deuterium-helium mixture plasmas, Nuclear Fusion, 49 (2009) 065035.

DOI: 10.1088/0029-5515/49/6/065035

Google Scholar

[15] T. Ogawa, A. Hasegawa, et al., Improvement of surface exfoliation behavior by helium-ion bombardment of a tungsten alloy fabricated by mechanical alloying, J. Nucl. Sci. Techn, 46(7) (2009) 717.

DOI: 10.1080/18811248.2007.9711578

Google Scholar

[16] H. Kurishita, Kobayashi S, et al., Development of ultra-fine grained W-(0. 25-0. 8) wt% TiC and its superior resistance to neutron and 3MeV He-ion irradiations, J. Nucl. Mater. 377 (2008) 34.

DOI: 10.1016/j.jnucmat.2008.02.055

Google Scholar

[17] M.A. Monge, M.A. Auger, et al., Characterization of novel W alloys produced by HIP, J. Nucl. Mater. 386-388 (2009) 613-617.

Google Scholar

[18] L.J. Kecskes, K.C. Cho, Grain size engineering of bcc refractory metals: Top-down and bottom-up- Application to tungsten, Mater Sci. Eng. A, 467(1-2) (2007) 33-43.

DOI: 10.1016/j.msea.2007.02.099

Google Scholar

[19] M. Kitada, Magnetic properties of immiscible Co-Ag and Ni-Ag thin films prepared by co-sputtering, J. Mater. Sci. 20(1) (1985) 269-273.

DOI: 10.1007/bf00555921

Google Scholar

[20] M. Itoh, M. Hori, S. Nadahara, The origin of stress in sputter-deposited tungsten films for x-ray masks, J. Vac. Sci. Technol. B, 9 (1991) 149.

DOI: 10.1116/1.585277

Google Scholar

[21] M.S. Aouadi, R.R. Parsons, P.C. Wong, et al., Characterization of sputter deposited tungsten films for x-ray multilayers, J. Vac. Sci. Tehnol. A, 10 (1992) 273.

Google Scholar

[22] K.Y. Ahn, A comparison of tungsten film deposition techniques for very large scale integration technology, Thin Solid Films, 153 (1987) 469.

DOI: 10.1016/0040-6090(87)90206-9

Google Scholar

[23] S.M. Rossnagel, I.C. Noyan, C. Cabral Jr., Phase transformation of thin sputter-deposited tungsten films at room temperature, J. Vac. Sci. Technol. B, 20 (2002) (2047).

DOI: 10.1116/1.1506905

Google Scholar

[24] V.G. Glebovsky, VY. Yaschak, et al., Properties of titanium-tungsten thin films obtained by magnetron sputtering of composite cast targets, Thin Solid Films, 257(1) (1995) 1.

DOI: 10.1016/0040-6090(94)06326-5

Google Scholar

[25] O. V. Ogorodnikova, T. Schwarz-Selinger, Deuterium retention in tungsten exposed to low-energy pure and helium-seeded deuterium plasmas, J. Appl. Phys. 109 (2011) 013309.

DOI: 10.1063/1.3505754

Google Scholar

[26] K. L Westra, D. J. Thomson, The microstructure of thin films observed using atomic force microscopy, Thin Solid Films, 257 (1995) 15-21.

DOI: 10.1016/0040-6090(94)06351-6

Google Scholar

[27] F.T.N. Vüllers, R. Spolenak, Alpha-vs. beta-W nanocrystalline thin films: A comprehensive study of sputter parameters and resulting materials' properties, Thin Solid Films, 577 (2015) 26-34.

DOI: 10.1016/j.tsf.2015.01.030

Google Scholar

[28] L.B. Freund, S. Suresh, Thin Film Materials-Stress, Defect Formation and Surface Evolution.

Google Scholar

[29] J.P. Singh, T. Karabacak, Nanoridge domains in α-phase W films, Surf. Sci. 538 (2003) 483-L487.

DOI: 10.1016/s0039-6028(03)00728-3

Google Scholar

[30] J.A. Thornton, D.W. Hoffman, Stress-related effects in thin films, Thin Solid Films, 171 (1989) 5-31.

DOI: 10.1016/0040-6090(89)90030-8

Google Scholar

[31] H. Windischmann, et. al, Intrinsic stress in sputter-deposited thin films, Crit. Rev. Solid State Mater. Sci. 17(6) (1992) 547-96.

DOI: 10.1080/10408439208244586

Google Scholar

[32] J.A. Thornton, Influence of substrate temperature and deposition rate on structure of thick sputtered Cu coatings, J. Vac. Sci. Technol. 12(4) (1975) 830-835.

DOI: 10.1116/1.568682

Google Scholar

[33] D.W. Hoffman, J.A. Thornton. The compressive stress transition in Al, V, Zr, Nb and W metal films sputtered at low working pressures, Thin Solid Films, 45(2) (1977) 387-396.

DOI: 10.1016/0040-6090(77)90276-0

Google Scholar

[34] W. Qingming, Y. Ding, Q. Chen, et al, Crystalline orientation dependence of nanomechanical properties of Pb (Zr 0. 52 Ti 0. 48) O3 thin films, Appl. Phys. Lett. 86 (2005) 162903.

DOI: 10.1063/1.1901805

Google Scholar

[35] L. Maille, C. Sant, P. Garnier. A nanometer scale surface morphology study of W thin films, Mater. Sci. eng. C, 23 (2003) 913-918.

DOI: 10.1016/j.msec.2003.09.114

Google Scholar

[36] G. Chen, D. Singh, O. Eryilmaz, et al., Depth-resolved residual strain in Mo N/Mo nanocrystalline films, Appl. Phys. Lett. 89(17) (2006) 172104-1.

DOI: 10.1063/1.2364131

Google Scholar

[37] C.A. Chang, Formation of copper silicides from Cu (100)/Si (100) and Cu (111)/Si (111) structures, J. Appl. Phys. 67 (1990) 566-569.

DOI: 10.1063/1.345194

Google Scholar

[38] H.M. Choi, S.K. Choi. Influence of residual stress and film thickness on crystallographic orientation in Al thin films deposited by bias sputtering, J. Vac. Sci. Technol. A, 16 (1998) 3348-3351.

DOI: 10.1116/1.581485

Google Scholar

[39] Y. Wang, Z.X. Song, Crystalline orientation and surface structure anisotropy of annealed thin tungsten films, Surf. Coat. Technol. 201 (2007) 5518-5521.

DOI: 10.1016/j.surfcoat.2006.07.090

Google Scholar