Multi-Pass Laser and Hybrid Laser-Arc Narrow-Gap Welding of Steel Butt Joints

Article Preview

Abstract:

Multi-pass laser and laser-arc narrow-gap welding make it possible to obtain high-quality butt joints of large-thickness pipe steels with hardness up to 2600...2800 MPa and toughness close to the base metal toughness at a temperature of 20°C. When multi-pass welding methods are used, the subsequent pass makes heat treatment of the previous ones, and reduces the rate of their cooling yet. This allows excluding heat treatment of the joint after welding, which significantly reduces the time and costs for manufacturing large-sized structures.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

64-71

Citation:

Online since:

July 2018

Export:

Price:

[1] W. Guo, J. A. Francis, L. Li, A. N. Vasileiou, D. Crowther, A. Thompson, Residual stress distributions in laser and gas-metal-arc welded high-strength steel plates. Materials Science and Technology 32.14 (2016) 1449-1461.

DOI: 10.1080/02670836.2016.1175687

Google Scholar

[2] A. Jayanthi, K. Venkataramanan, K. Suresh Kumar, Laser beam a novel tool for welding: A review. IOSR Journal of Applied Physics 8 (2016) 08-26.

Google Scholar

[3] J. C. Feng, D. W. Rathod, M. J. Roy, J. A. Francis, W. Guo, N. M. Irvine, A. N. Vasileiou, Y. L. Sun, M. C. Smith, L. Li, An evaluation of multipass narrow gap laser welding as a candidate process for the manufacture of nuclear pressure vessels. International Journal of Pressure Vessels and Piping 157 (2017) 43-50.

DOI: 10.1016/j.ijpvp.2017.08.004

Google Scholar

[4] D. P. Il'yaschenko, D. A. Chinakhov, R. A. Mamadaliev, Effect of inverter power source characteristics on welding stability and heat affected zone dimensions. IOP Conference Series: Earth and Environmental Science 115 (2018) 012041.

DOI: 10.1088/1755-1315/115/1/012041

Google Scholar

[5] J. Feng, W. Guo, J. Francis, N. Irvine, L. Li, Understanding and elimination of process defects in narrow gap multi-pass fiber laser welding of ferritic steel sheets of 30 mm thickness. The International Journal of Advanced Manufacturing Technology 88.5-8 (2017) 1821-1830.

DOI: 10.1007/s00170-016-8929-1

Google Scholar

[6] W. Guo, D. Crowther, J. A. Francis, A. Thompson, L. Li, Process-parameter interactions in ultra-narrow gap laser welding of high strength steels. The International Journal of Advanced Manufacturing Technology 84.9-12 (2016) 2547-2566.

DOI: 10.1007/s00170-015-7881-9

Google Scholar

[7] Y. C. Yu, S. L. Yang, Y. Yin, C. M. Wang, X. Y. Hu, X. X. Meng, S. F. Yu, Multi-pass laser welding of thick plate with filler wire by using a narrow gap joint configuration. Journal of Mechanical Science and Technology 27.7 (2013) 2125-2131.

DOI: 10.1007/s12206-013-0525-9

Google Scholar

[8] J. Näsström, J. Frostevarg, T. Silver, Hot-wire laser welding of deep and wide gaps. Physics Procedia 78 (2015) 247-254.

DOI: 10.1016/j.phpro.2015.11.035

Google Scholar

[9] T. Jokinen and V. Kujanpää, High power Nd: YAG laser welding in manufacturing of vacuum vessel of fusion reactor. Fusion Engineering and Design 69.1-4 (2003) 349-353.

DOI: 10.1016/s0920-3796(03)00071-1

Google Scholar

[10] F. Mirakhorli, X. Cao, X. T. Pham, P. Wanjara, J. L. Fihey, Technical challenges in narrow-gap root pass welding during tandem and hybrid laser-arc welding of a thick martensitic stainless steel. Materials Science Forum 879 (2017) 1305-1310.

DOI: 10.4028/www.scientific.net/msf.879.1305

Google Scholar

[11] Y. Arata, H. Maruo, I. Miyamoto, R. Nishio, High power CO2-laser welding of thick plate: multipass weding with filler wire. Transactions of JWRI 15.2 (1986) 199-206.

Google Scholar

[12] M. Karhu, V. Kujanpää, Defocusing techniques for multi-pass laser welding of austenitic stainless steel. Physics Procedia 78 (2015) 53-64.

DOI: 10.1016/j.phpro.2015.11.017

Google Scholar

[13] D. A. Chinakhov, E. G. Grigorieva, E. I. Mayorova, Study of gasdynamic effect upon the weld geometry when consumable electrode welding. IOP Conf. Series: Materials Science and Engineering 127 (2016) 012013.

DOI: 10.1088/1757-899x/127/1/012013

Google Scholar

[14] R. Li, T. Wang, C. Wang, F. Yan, X. Shao, X. Hu, J. Li, A study of narrow gap laser welding for thick plates using the multi-layer and multi-pass method. Optics & Laser Technology 64 (2014) 172-183.

DOI: 10.1016/j.optlastec.2014.04.015

Google Scholar

[15] A. Salminen, The filler wire-laser beam interaction during laser welding with low alloyed steel filler wire. Mechanics 84.4 (2010) 67-74.

Google Scholar

[16] H. Shi, K. Zhang, Z. Xu, T. Huang, L. Fan, W. Bao, Applying statistical models optimize the process of multi-pass narrow-gap laser welding with filler wire. The International Journal of Advanced Manufacturing Technology 75.1-4 (2014) 279-291.

DOI: 10.1007/s00170-014-6159-y

Google Scholar

[17] S. K. Wu, J. L. Zou, R. S. Xiao, G. W. Zhang, Ultra-Narrow-Groove Laser Welding for Heavy Sections in ITER. Welding Journal 95.8 (2016) 300S-308S.

Google Scholar

[18] D. Dittrich, R. Schedewy, B. Brenner, J. Standfuß, Laser-multi-pass-narrow-gap-welding of hot crack sensitive thick aluminum plates. Physics Procedia 41 (2013) 225-233.

DOI: 10.1016/j.phpro.2013.03.073

Google Scholar

[19] Y. Markushov, N. Evtihiev, N. Grezev, M. Murzakov, Multipass narrow gap of heavy gauge steel with filler wire. Physics Procedia 71 (2015) 267-271.

DOI: 10.1016/j.phpro.2015.08.299

Google Scholar

[20] L. Holub, J. Dunovský, J. Suchánek, Evaluation of hardness curves of multilayer welds of creep resistant steel 1.6946 using saw method to the ultra, narrow gap. Modern Machinery 3 (2015) 591-595.

DOI: 10.17973/mmsj.2015_03_201511

Google Scholar

[21] M. Murayama, O. Daisuke, K. Ooe, Narrow gap gas metal arc (GMA) welding technologies. JFE Technical Report 20 (2015) 147-153.

Google Scholar

[22] O. Berdnikova, V. Poznyakov, O. Bushma, Laser and hybrid laser-arc welding of high strength steel N-A-XTRA-70. Materials Science Forum 870 (2016) 630-635.

DOI: 10.4028/www.scientific.net/msf.870.630

Google Scholar

[23] L. Markashova, O. Berdnikova, A. Bernatskyi, M. Iurzhenko, V Sydorets, Physical and mechanical properties of high-strength steel joints produced by laser welding. In Young Scientists Forum on Applied Physics and Engineering (YSF), IEEE International (2017) 88-91.

DOI: 10.1109/ysf.2017.8126596

Google Scholar

[24] H. Motohashi, N. Hagiwara, T. Masuda, Tensile properties and microstructure of weld metal in MAG welded X80 pipeline steel. Welding international 19.2 (2005) 100-108.

DOI: 10.1533/wint.2005.3376

Google Scholar

[25] V. F. Grabin, V. V. Golovko, V. A. Kostin, I. I. Alekseenko, Morphological peculiarities of microstructure of weld metal from low-alloy steels with ultralow content of carbon. The Paton Welding Journal 7 (2004) 15-20.

Google Scholar