Synthesis and Characterization by Ellipsometry of Cationic Membranes for Fuel Cells

Article Preview

Abstract:

In this study, cationic membranes based on poly (vinyl alcohol) (PVA) were synthesized, crosslinked with citric acid (carboxylic group) and 4-sulpho-phthalic acid (sulphonic group) for application as proton-conducting membranes of H3O+. The membranes were prepared from the mixture of PVA with the crosslinking agents (CA), previously dissolved and separated with the mixture of these. The CAs proportions used were 10%, 30% and 50%, based on the weight of PVA, and they were crosslinked at the temperatures of 120oC and 140oC. The films were characterized by thermal stability using TGA, spectroscopy ellipsometry (relative refractive index and real part of dielectric constant), swelling degree (water absorption) and conductivity, using electrochemical impedance spectroscopy (EIS). A variation in the refractive index as a function of CA concentration was observed. This fact was corroborated with the results of dielectric constant, because the higher concentration of hydrophilic group added to the film, higher the values of dielectric constant. The membranes which showed lowest swelling degree values were crosslinked with 4-sulpho-phthalic acid (sulphonic group), for example, the PVA membrane crosslinked with 50% of 4-sulpho-phtalic acid, at 140oC, showed 6.4% of water absorption, while the membrane PVA crosslinked with the same content of CA, but of citric acid, and temperature, presented 15.8%. The conductivity of some membranes, under the assay condition evaluated, was the same order of magnitude as the commercial membranes, Nafion®. The synthesized membranes have been showing potential application as cationic polymer membranes for the transport of H3O+.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

625-630

Citation:

Online since:

September 2018

Export:

Price:

* - Corresponding Author

[1] H. Wendt, M. Linardi, E.M. Aricó: Química Nova Vol. 25 (2002), p.470.

Google Scholar

[2] R. Aldabó: Célula a Combustível a Hidrogênio. (Artliber São Paulo, 2004).

Google Scholar

[3] F.J.B. Brum: Membranas Catiônicas a base de poli(indeno) sulfonado/PVA para uso como eletrólito em célula a combustível tipo PEMFC. Doutorado (Tese). Porto Alegre, 2013. Universidade Federal do Rio Grande do Sul (UFRGS). (RS).

DOI: 10.32467/issn.2175-3628v23n1a14

Google Scholar

[4] S. Deng, M.K. Hassan, K.A. Mautitz, J.W. Mays: Polymer Vol. 73 (2015), p.17.

Google Scholar

[5] J.M. Morancho, J.M. Sala, A. Cadenato, X. Fernández-Francos, X. Ramis, P. Colomer, Y. Calventus, R. Ruíz: Termochimica Acta Vol. 521 (2011), p.139.

DOI: 10.1016/j.tca.2011.04.016

Google Scholar

[6] C.M.F. Martins: Desenvolvimento de membranas para aplicação em células a combustível a alta temperatura. Mestrado (Dissertação). Lisboa, 2011. Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa (FCT/UNL) (POR).

DOI: 10.11606/d.85.2021.tde-18082021-145926

Google Scholar

[7] B. Smitha, S. Sridhar, A.A. Khan: Journal of Membrane Science Vol. 259 (2005), p.10.

Google Scholar

[8] J.A. Kerres: Journal of Membrane Science Vol. 185 (2001), p.3.

Google Scholar

[9] Y. Wanga, K.S. Chen, J. Mishler, S.C. Cho, X.C. Adroher: Applied Energy Vol. 88 (2011), p.981.

Google Scholar

[10] J. Chena, E. Louisa, R. Harmsena, T. Tsarfati, H. Wormeesterb, M. van Kampenc, W. van Schaikc, R. van de Kruijsa, F. Bijkerk: Applied Surface Science Vol. 258 (2011), p.7.

Google Scholar

[11] C.R. Martins, G. Ruggeri, M.A. de Paoli: Journal of the Brazilian Chemical Society Vol. 14 (5) (2003), pp.797-802.

Google Scholar

[12] P.A. Soave: Estudo de filmes PC/PMMA voltado para aplicações em dispositivos termo-ópticos. Doutorado (Tese). Porto Alegre, 2010. Universidade Federal do Rio Grande do Sul (UFRGS). (RS).

DOI: 10.32467/issn.2175-3628v23n1a14

Google Scholar

[13] F.J.B. Brum, F.G. Zanatta, E.S. Marczynski, M.M.C. Forte, B. Pollet: Solid State Ionics Vol. 263 (2014), p.62.

DOI: 10.1016/j.ssi.2014.05.009

Google Scholar