Cryogenic Sheet Metal Forming - An Overview

Article Preview

Abstract:

Despite extensive efforts to improve energy efficiency in the automotive sector, the use of light-weight aluminium alloys for car bodies is impeded by formability limitations. Although it is a known phenomenon that Al alloys increase their strength and ductility at very low temperatures, it has not been attempted to exploit this effect to increase their overall formability at an industrial scale. Over the last four years, the cryogenic sheet metal forming behaviour of Al-alloys was extensively investigated to establish a process robust enough for manufacturing automotive parts at an industrial level. Initial experiments include tensile tests at temperatures down to –196 °C for characterisation of 5xxx and 6xxx series Al alloys, providing the mechanical material data for numerical design simulations of sheet metal forming processes at cryogenic temperatures. Numerical simulations will not be discussed in this publication. Furthermore, the necessary hardware for cryogenic sheet metal forming was developed and finally resulted in a semi-automated small scale industrial production site. The production of a miniaturized B-Pillar was demonstrated for 5xxx and 6xxx alloys. Due to the part’s demanding geometry, defect-free deep drawing process is possible at cryogenic temperature only. These results demonstrate that the use of Al alloys could be extended beyond their current applications in cars components. For example, the overall formability of 5xxx series alloys nearly doubles compared to room temperature. This paper shall give an overview over our work in the field of cryogenic aluminium sheet metal forming within the last couple of years.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1397-1403

Citation:

Online since:

December 2018

Export:

Price:

* - Corresponding Author

[1] F. Ostermann, Anwendungstechnologie Aluminium, 3. Auflage, Springer Vieweg, 2014, Chapter 2.5 and 6.1.5.

Google Scholar

[2] H. E. Friedrich, Leichtbau in der Fahrzeugtechnik, Springer Vieweg, 2013, Chapter 6.2.1.

Google Scholar

[3] C. Kammer, Aluminium Taschenbuch 1 16. Auflage, Aluminium-Verlag Düsseldorf, 2002, Chapter 5.1.5.

Google Scholar

[4] N. Sotirov, G. Falkinger, F. Grabner, G. Schmid, R. Schneider, R.J. Grant, Improved formability of AA5182 aluminium alloy sheet at cryogenic temperatures, Materials Today Proceedings 2 (2015) 113−118.

DOI: 10.1016/j.matpr.2015.05.027

Google Scholar

[5] M. Kumar, N. Sotirov, F. Grabner, R. Schneider, G. Mozdzen, Cryogenic forming behaviour of AW-6016-T4 sheet, Trans. Nonferrous Met. Soc. China 27 (2017) 1257−1263.

DOI: 10.1016/s1003-6326(17)60146-8

Google Scholar

[6] R. Schneider, B. Heine, R. J. Grant, R. Kelsch, F. Gerstner, T. Hägle, Mechanical behaviour of automobile relevant aluminium wrought alloys at low temperatures, International Aluminium Journal 88 (2012) 77-82.

DOI: 10.5772/58362

Google Scholar

[7] R. Schneider, R.J. Grant, B. Heine, R. Börret, S. Burger, Z. Zouaoui, An analysis of the surface quality of AA5182 at different testing temperatures, Materials and Design 64 (2014) 750–754.

DOI: 10.1016/j.matdes.2014.08.028

Google Scholar

[8] M. Abbadi, P. Hähner, A. Zeghloul, On the characteristics of Portevin Le Chatelier bands in aluminium alloy 5182 under stress-controlled and strain-controlled tensile testing, Materials Science and Engineering A337 (2002) 194-201.

DOI: 10.1016/s0921-5093(02)00036-9

Google Scholar

[9] J. Marnette, M. Weiss, P.D. Hodgson, Roll-formability of cryo-rolled ultrafine aluminium sheet, Materials and Design 63 (2014) 471–478.

DOI: 10.1016/j.matdes.2014.06.036

Google Scholar

[10] Y.C Huang, X.Y. Yan, T. Qiu, Microstructure and mechanical properties of cryo-rolled AA6061 Al alloy, Trans. Nonferrous Met. Soc. China 26 (2016) 12−18.

DOI: 10.1016/s1003-6326(16)64083-9

Google Scholar

[11] R. Cobden, Aluminium: Physical Properties, Characteristics and Alloys, TALAT Lecture 1501 (1994), EAA – European Aluminium Association.

Google Scholar

[12] E. Doege, B.-A. Behrens, Handbuch der Umformtechnik – Grundlagen, Technologie, Maschinen, Springer, Berlin - Heidelberg - New York, 2006, pp.262-265.

DOI: 10.1007/978-3-642-04249-2_2

Google Scholar

[13] Ch. Reichl, R. Schneider, W. Hohenauer, F. Grabner, R.J. Grant, A numerical simulation of thermodynamic processes for cryogenic metal forming of aluminium sheets and comparison with experimental results, Applied Thermal Engineering 113 (2017) 1228-1241.

DOI: 10.1016/j.applthermaleng.2016.11.090

Google Scholar

[14] W. Wen, Y. Zhao, J.G. Morris, The effect of Mg precipitation on the mechanical properties of 5xxx aluminum alloys, Materials Science and Engineering A 392 (2005) 136–144.

DOI: 10.1016/j.msea.2004.09.059

Google Scholar

[15] R.C. Picu, G. Vincze, F. Ozturk, J.J. Gracio, F. Barlat, A.M. Maniatty, Strain rate sensitivity of the commercial aluminum alloy AA5182-O, Materials Science and Engineering A 390 (2005) 334–343.

DOI: 10.1016/j.msea.2004.08.029

Google Scholar