Amorphous Alumina Films Efficiently Protect Ti6242S against Oxidation and Allow Operation above 600 °C

Article Preview

Abstract:

The protection of the titanium based Ti6242S alloy against oxidation at moderate temperature is investigated, through the application on its surface of a 300 nm thick, amorphous alumina film. The latter is processed by metalorganic chemical vapor deposition at 500 °C from dimethyl aluminum isopropoxide. Upon oxidation at 600 °C for 5000 h, an interfacial zone is created between the alloy and the external protective layer, composed of unaffected alumina. In these conditions, the mass gain per unit area is eight times lower than that of the bare alloy, while the hardness of the alloy remains unaffected, revealing negligible oxygen ingress attributed to the efficiency of the protective coating. Finally, alumina coated samples show negligible mass change after 80 one-hour thermal cycles between 50 °C and 600 °C, showing excellent coating adherence on the Ti alloy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1846-1852

Citation:

Online since:

December 2018

Export:

Price:

* - Corresponding Author

[1] G. Lütjering, J.C. Williams, Titanium, Springer-Verlag, Berlin, Heidelberg, (2007).

Google Scholar

[2] C. Leyens, M. Peters, Titanium and Titanium Alloys: Fundamentals and Applications, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, (2003).

Google Scholar

[3] A.L. Pilchak, W.J. Porter, R. John, Room temperature fracture processes of a near-alpha titanium alloy following elevated temperature exposure, Journal of Materials Science, 47 (2012) 7235-7253.

DOI: 10.1007/s10853-012-6673-y

Google Scholar

[4] K.S. McReynolds, S. Tamirisakandala, A Study on Alpha-Case Depth in Ti-6Al-2Sn-4Zr-2Mo, Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 42A (2011) 1732-1736.

DOI: 10.1007/s11661-011-0710-3

Google Scholar

[5] Q. Ru, S.J. Hu, Effects of Ti0.5Al0.5N coatings on the protecting against oxidation for titanium alloys, Rare Metals, 29 (2010) 154-161.

DOI: 10.1007/s12598-010-0027-1

Google Scholar

[6] M. Delmas, D. Poquillon, Y. Kihn, C. Vahlas, Al-Pt MOCVD coatings for the protection of Ti6242 alloy against oxidation at elevated temperature., Surf. Coat. Techn., 200 (2005) 1413-1417.

DOI: 10.1016/j.surfcoat.2005.08.028

Google Scholar

[7] M. Delmas, C. Vahlas, Microstructure of Metalorganic Chemical Vapor Deposited Aluminium Coatings on Ti6242 Alloy, J. Electrochem. Soc., 154 (2007) D538-D542.

DOI: 10.1149/1.2769265

Google Scholar

[8] A.-L. Thomann, C. Vahlas, L. Aloui, D. Samélor, A. Caillard, N. Shaharil, R. Blanc, E. Millon, Conformity of Aluminum Thin Films Deposited onto Micro-Patterned Silicon Wafers by Pulsed Laser Deposition, Magnetron Sputtering, and CVD, Chem. Vap. Dep., 17 (2011) 366–374.

DOI: 10.1002/cvde.201106936

Google Scholar

[9] Z.P. Jiang, X. Yang, Y.F. Liang, G.J. Hao, H. Zhang, J.P. Lin, Favorable deposition of gamma-Al2O3 coatings by cathode plasma electrolysis for high-temperature application of Ti-45Al-8.5Nb alloys, Surface & Coatings Technology, 333 (2018) 187-194.

DOI: 10.1016/j.surfcoat.2017.11.005

Google Scholar

[10] Y. Balcaen, N. Radutoiu, J. Alexis, J.D. Béguin, L. Lacroix, D. Samelor, C. Vahlas, Mechanical and barrier properties of MOCVD processed alumina coatings on TA6V titanium alloy, Surf. Coat. Techn., 206 (2011) 1684-1690.

DOI: 10.1016/j.surfcoat.2011.09.056

Google Scholar

[11] G. Boisier, M. Raciulete, D. Samélor, N. Pébère, A.N. Gleizes, C. Vahlas, Electrochemical behavior of chemical vapor deposited protective aluminium oxide coatings on Ti6242 titanium alloy, Electrochem. Sol. State Lett., 11 (2008) C55-C57.

DOI: 10.1149/1.2968109

Google Scholar

[12] L. Baggetto, C. Charvillat, J. Esvan, Y. Thébault, D. Samélor, H. Vergnes, B. Caussat, A. Gleizes, C. Vahlas, A process-structure investigation of aluminum oxide and oxycarbide thin films prepared by direct liquid injection chemical vapor deposition of dimethylaluminum isopropoxide (DMAI), Chem. Vap. Dep., 21 (2015) 343-351.

DOI: 10.1002/cvde.201507190

Google Scholar

[13] C. Dupressoire, A. Rouaix-Vande Put, P. Emile, C. Archambeau-Mirguet, R. Peraldi, D. Monceau, Effect of Nitrogen on the Kinetics of Oxide Scale Growth and of Oxygen Dissolution in the Ti6242S Titanium-Based Alloy, Oxidation of Metals, 87 (2017) 343-353.

DOI: 10.1007/s11085-017-9729-1

Google Scholar

[14] L. Baggetto, J. Esvan, C. Charvillat, D. Samélor, H. Vergnes, B. Caussat, A. Gleizes, C. Vahlas, Alumina thin films prepared by direct liquid injection chemical vapor deposition of dimethylaluminum isopropoxide: a process-structure investigation., Physica Status Solidi C, 12 (2015) 989-995.

DOI: 10.1002/pssc.201510009

Google Scholar

[15] D. Monceau, D. Poquillon, Continuous thermogravimetry under cyclic conditions, Oxidation of Metals, 61 (2004) 143-163.

DOI: 10.1023/b:oxid.0000016281.25965.93

Google Scholar

[16] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments., J. Mater. Res., 7 (1992) 1564-1583.

DOI: 10.1557/jmr.1992.1564

Google Scholar

[17] L. Baggetto, C. Charvillat, Y. Thébault, J. Esvan, M.C. Lafont, E. Scheid, G.M. Veith, C. Vahlas, Amorphous alumina thin films deposited on titanium: Interfacial chemistry and thermal oxidation barrier properties, Phys. Stat. Sol. A, 213 (2016) 470–480.

DOI: 10.1002/pssa.201532838

Google Scholar