Single Track Formation during Selective Laser Melting of Ti-6Al-4V Alloy

Article Preview

Abstract:

Selective laser melting (SLM) is an additive manufacturing technology that allows to produce functional parts with extremely complex shape from metal powder feedstock. 240 single tracks with the length of 10 mm were fabricated using different SLM process parameters: laser power output, powder layer thickness, point distance and exposure time. Obtained single tracks were measured using optical microscopy. An influence of SLM process parameters on geometrical characteristics of obtained single tracks was investigated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

978-983

Citation:

Online since:

February 2019

Authors:

Export:

Price:

* - Corresponding Author

[1] N.W. Makoana, H. Moller, H. Burger, M. Tlotleng, I. Yadroitsev, Evaluation of single tracks of 17-4PH steel manufactured at different power densities and scanning speeds by selective laser melting, South African J. Ind. Eng. 27 (2016) 210–218.

DOI: 10.7166/27-3-1668

Google Scholar

[2] P. Lykov, R. Baytimerov, S. Vaulin, E. Safonov, D. Zherebtsov, Selective Laser Melting of Copper by 200 W CO2 Laser, SAE Tech. Pap. 2016–April (2016).

DOI: 10.4271/2016-01-0333

Google Scholar

[3] E.C. Santos, K. Osakada, M. Shiomi, Y. Kitamura, F. Abe, Microstructure and mechanical properties of pure titanium models fabricated by selective laser melting, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 218 (2004) 711–719.

DOI: 10.1243/0954406041319545

Google Scholar

[4] L. Zhou, T. Yuan, R. Li, J. Tang, G. Wang, K. Guo, Selective laser melting of pure tantalum: Densification, microstructure and mechanical behaviors, Mater. Sci. Eng. A. 707 (2017) 443–451.

DOI: 10.1016/j.msea.2017.09.083

Google Scholar

[5] P.A. Lykov, R.M. Baitimerov, S.D. Vaulin, Influence of SLM Process Parameters on Porosity of Nickel Base Heat Resistance Alloy EP648, Mater. Sci. Forum. 843 (2016) 253–258.

DOI: 10.4028/www.scientific.net/msf.843.253

Google Scholar

[6] S. Pal, G. Lojen, V. Kokol, I. Drstvensek, Evolution of metallurgical properties of Ti-6Al-4V alloy fabricated in different energy densities in the Selective Laser Melting technique, J. Manuf. Process. 35 (2018) 538–546.

DOI: 10.1016/j.jmapro.2018.09.012

Google Scholar

[7] Qingbo Jia, Dongdong Gu, SLM Additive Manufacturing of Inconel 718: Densification microstructure and properties, J. Alloys Compd. (2013).

Google Scholar

[8] P.A. Lykov, S.B. Sapozhnikov, R.M. Baitimerov, The manufacturing of the AlSi12-Al2O3 composite powder for additive production methods, Solid State Phenom. 870 (2016) 314–317.

DOI: 10.4028/www.scientific.net/msf.870.314

Google Scholar

[9] D. Gu, Y. Shen, Z. Lu, Preparation of TiN-Ti5Si3 in-situ composites by Selective Laser Melting, Mater. Lett. 63 (2009) 1577–1579.

DOI: 10.1016/j.matlet.2009.04.010

Google Scholar

[10] D. Gu, Y. Shen, Effects of processing parameters on consolidation and microstructure of W-Cu components by DMLS, J. Alloys Compd. 473 (2009) 107–115.

DOI: 10.1016/j.jallcom.2008.05.065

Google Scholar

[11] H. Wang, B. Zhao, C. Liu, C. Wang, X. Tan, M. Hu, A comparison of biocompatibility of a titanium alloy fabricated by electron beam melting and selective laser melting, PLoS One. 11 (2016).

DOI: 10.1371/journal.pone.0158513

Google Scholar

[12] R. Wauthle, J. van der Stok, S. Amin Yavari, J. Van Humbeeck, J.-P. Kruth, A.A. Zadpoor, H. Weinans, M. Mulier, J. Schrooten, Additively manufactured porous tantalum implants, Acta Biomater. 14 (2015) 217–225.

DOI: 10.1016/j.actbio.2014.12.003

Google Scholar

[13] D.D. Gu, W. Meiners, K. Wissenbach, R. Poprawe, Laser additive manufacturing of metallic components: materials, processes and mechanisms, Int. Mater. Rev. 57 (2012) 133–164.

DOI: 10.1179/1743280411y.0000000014

Google Scholar

[14] S.M. Wagner, R.O. Walton, Additive manufacturing's impact and future in the aviation industry, Prod. Plan. Control. 27 (2016) 1124–1130.

Google Scholar

[15] E. Uhlmann, R. Kersting, T.B. Klein, M.F. Cruz, A.V. Borille, Additive Manufacturing of Titanium Alloy for Aircraft Components, Procedia CIRP. 35 (2015) 55–60.

DOI: 10.1016/j.procir.2015.08.061

Google Scholar

[16] R. Baitimerov, P. Lykov, D. Zherebtsov, L. Radionova, A. Shultc, K.G. Prashanth, Influence of powder characteristics on processability of AlSi12 alloy fabricated by selective laser melting, Materials (Basel). 11 (2018).

DOI: 10.3390/ma11050742

Google Scholar

[17] I. Yadroitsev, P. Krakhmalev, I. Yadroitsava, Hierarchical design principles of selective laser melting for high quality metallic objects, Addit. Manuf. 7 (2015) 45–56.

DOI: 10.1016/j.addma.2014.12.007

Google Scholar

[18] R. Boyer, G. Welsch, E.V. Collings, Materials Properties Handbook: Titanium Alloys, ASM International, (1994).

Google Scholar

[19] M.J. Donachie, Titanium: A Technical Guide,2nd ed., ASM International, (2000).

Google Scholar

[20] R.M. Baitimerov, P.A. Lykov, L.V. Radionova, E.V. Safonov, Parameter optimization for selective laser melting of TiAl6V4 alloy by CO2 laser, IOP Conf. Ser. Mater. Sci. Eng. 248 (2017).

DOI: 10.1088/1757-899x/248/1/012012

Google Scholar

[21] C. Qiu, N.J.E. Adkins, M.M. Attallah, Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti-6Al-4V, Mater. Sci. Eng. A. 578 (2013) 230–239.

DOI: 10.1016/j.msea.2013.04.099

Google Scholar

[22] E. Sallica-Leva, A.L. Jardini, J.B. Fogagnolo, Microstructure and mechanical behavior of porous Ti–6Al–4V parts obtained by selective laser melting, J. Mech. Behav. Biomed. Mater. 26 (2013) 98–108.

DOI: 10.1016/j.jmbbm.2013.05.011

Google Scholar

[23] R.M. Baitimerov, P.A. Lykov, L.V. Radionova, A.M. Akhmedianov, S.P. Samoilov, An investigation of high temperature tensile properties of selective laser melted ti-6al-4v, Proc. 3rd Int. Conf. Prog. Addit. Manuf. (2018) 439–444.

Google Scholar

[24] I. Yadroitsava, J. Els, G. Booysen, I. Yadroitsev, Percularities of single track formation from Ti6Al4V alloy at different laser power densities by selective laser melting, South African J. Ind. Eng. 26 (2015) 86–95.

DOI: 10.7166/26-3-1185

Google Scholar

[25] S. Jianfeng, Y. Yongqiang, L. Jie, W. Di, Mathematical model of Ti-6AL-4V single track formed by selective laser melting, Adv. Mater. Res. 602–604 (2013) 2074–(2077).

DOI: 10.4028/www.scientific.net/amr.602-604.2074

Google Scholar

[26] J. Els, M. Truscott, K. Van Der Walt, G. Booysen, Establishing the optimal process parameters for the laser sintering of Ti64 for layer thicknesses of 15 μm and 30 μm and validation of a melt pool simulation model, Adv. Mater. Res. 1019 (2014) 254–258.

DOI: 10.4028/www.scientific.net/amr.1019.254

Google Scholar

[27] C.F.U. Tey, W.Y.E.E. Yeong, SLM OF TI-6AL-4V single melt-tracks under different layer thickness and surface roughness, in: Proc. Int. Conf. Prog. Addit. Manuf., 2018: p.347–352.

Google Scholar

[28] P.A. Lykov, R.M. Baitimerov, A.V. Panfilov, A.. Guz, The manufacturing of TiAl6V4 implants using selective laser melting technology, IOP Conf. Ser. Mater. Sci. Eng. 248 (2017).

DOI: 10.1088/1757-899x/248/1/012004

Google Scholar