Time Dependence of Muon Spin Relaxation Rate in Aluminum and Al-1.6%Mg2Si Alloy

Article Preview

Abstract:

Zero-field muon spin relaxation experiments were carried out for Al-1.6%Mg2Si and a pure aluminum in isothermal conditions between 260 and 300 K. Observed relaxation spectra were analyzed to extract the dipole width (D) values which were found to decrease with time after solution heat treatment and quenching. Time variations of D appeared to take place two stages in both samples. The stage transition times (tII) deduced for Al-1.6%Mg2Si were comparable to those for the Si-rich clustering stage reported for Al-Mg-Si alloys. The estimated activation energy of Si-rich clustering was 0.62 (±0.04) eV. The stage transition times (tM) for the pure aluminum were 255, 110 and 82 min after quenching at the measuring temperatures of 260, 280 and 300 K, respectively. An Arrhenius plot of logarithmic tM against reciprocal temperature resulted in an activation energy of 0.19 (±0.06) eV.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

10-15

Citation:

Online since:

April 2020

Export:

Price:

* - Corresponding Author

[1] A. Seeger, Phys. Lett. 53A (1975) 324-326.

Google Scholar

[2] K. Dorenburg, M. Gladisch, D. Herlach, W. Mansel, H. Metz, H. Orth, G. zu Putlitz, A. Seeger, W. Wahl, M. Wigand, Z. Physik B31 (1978) 165-169.

DOI: 10.1007/bf01333887

Google Scholar

[3] J. A. Brown, R. H. Heffner, M. Leon, M. E. Schillaci, D. W. Cooke, W. B. Gauster, Phys. Rev. Lett. 43 (1979) 1513-1516.

DOI: 10.1103/physrevlett.43.1513

Google Scholar

[4] R. Nakai, M. Doyama, R. Yamamoto, Y. J. Uemura, T. Yamazaki, J. H. Brewer, Hyper. Inter. 8 (1981) 717-720.

Google Scholar

[5] E. Sato, T. Hatano, Y. Suzuki, M. Imafuku, M. Sunaga, M. Doyama, Y. Morozumi, T. Suzuki, K. Nagamine, Hyper. Inter. 17-19 (1984) 203-210.

DOI: 10.1007/bf02065903

Google Scholar

[6] T. Hatano, Y. Suzuki, M. Doyama, Y. J. Uemura, T. Yamazaki, J. H. Brewer, Hyper. Inter. 17-19 (1984) 211-218.

Google Scholar

[7] K. W. Kehr, D. Richter, J. –M. Welter, O. Hartmann, E. Karlsson, L. O. Norlin, T. O. Niinikoski, A. Yaouanc, Phys. Rev B26 (1982) 567-590.

DOI: 10.1103/physrevb.26.567

Google Scholar

[8] O. Hartmann, E. Karlsson, E. Wäckelgård, R. Wäppling, D. Richter, R. Hempelmann, T. O. Niinikoski, Phys. Rev. B37 (1988) 4425-4440.

DOI: 10.1103/physrevb.37.4425

Google Scholar

[9] S. Wenner, R. Holmestad, K. Matsuda, K. Nishimura, T. Matsuzaki, D. Tomono, F.L. Pratt and C.D. Marioara, Phys. Rev. B86 (2012) 104201.

DOI: 10.1103/physrevb.86.104201

Google Scholar

[10] S. Wenner, K. Nishimura, K. Matsuda, T. Matsuzaki, D. Tomono, F.L. Pratt, C.D. Marioara, R. Holmestad, Acta Mater. 61 (2013) 6082–6092.

DOI: 10.1016/j.actamat.2013.06.050

Google Scholar

[11] S. Wenner, K. Nishimura, K. Matsuda, T. Matsuzaki, D. Tomono, F.L. Pratt, C.D. Marioara, R. Holmestad, Metall. Mater. Trans. 45A (2014) 5777-5781.

DOI: 10.1007/s11661-014-2527-3

Google Scholar

[12] K. Nishimura, K. Matsuda, R. Komaki, N. Nunomura, S. Wenner, R. Holmestad, T. Matsuzaki, I. Watanabe, F. L. Pratt, C. D.Marioara, J. Phys. Confer. Ser. 551 (2014) 012031.

DOI: 10.1088/1742-6596/551/1/012031

Google Scholar

[13] K. Nishimura, K. Matsuda, R. Komaki, N. Nunomra, S. Wenner, R. Holmestad, T. Matsuzaki, I. Watanabe, F.L. Pratt: Arch. Metall. Mater. 60 (2015) 925-929.

DOI: 10.1515/amm-2015-0231

Google Scholar

[14] T. Matsuzaki, K. Ishida, K. Nagamine, I. Watanabe, G.H. Eaton, W.G. Williams: Nucl. Instr. Methods A465 (2001) 365–383.

Google Scholar

[15] R. S. Hayano, Y. J. Uemura, J. Imazato, N. Nishida, T. Yamazaki, R. Kubo, Phys. Rev. B20 (1979) 850-859.

DOI: 10.1103/physrevb.20.850

Google Scholar

[16] F. L. Pratt, Physica B289-290 (2000) 710-714.

Google Scholar

[17] K. Nishimura, K. Matsuda, T. Namiki, N. Nunomra, T. Matsuzaki, W. D. Hutchison, Mater. Trans. 56 (2015) 1307-1309.

DOI: 10.2320/matertrans.m2015157

Google Scholar

[18] K. Nishimura, K. Matsuda, Q. Lei, T. Namiki, S. Lee, N. Nunomra, T. Matsuzaki, W. D. Hutchison: Mater. Trans. 57 (2016) 627-630.

DOI: 10.2320/matertrans.m2015474

Google Scholar

[19] J. Banhart, M.D. H.Lay, C.S.T. Chang, and A.J. Hill, Phys. Rev. B83 (2011) 014101.

Google Scholar

[20] M. Werinos, H. Antrekowitsch, T. Ebner, R. Prillhofer, P.J. Uggowitzer, and S. Pogatscher, Mater. Des. 107 (2016) 257-268.

DOI: 10.1016/j.matdes.2016.06.014

Google Scholar

[21] M. Liu and J. Banhart, Mater. Sci. Eng. A 658 (2016) 238-245.

Google Scholar

[22] D. Hatakeyama, K. Nishimura, K. Matsuda, T. Namiki, S. Lee, N. Nunomura, T. Aida, T. Matsuzaki, R. Holmestad, S. Wenner, and C. D. Marioara, Metall. Mater. Trans. A49 (2018) 5871-5877.

DOI: 10.1007/s11661-018-4832-8

Google Scholar

[23] H. Seyedrezai, D. Grebennikov, P. Mascher and H. S. Zurob, Mater. Sci. Eng. A 525 (2009) 186-191.

Google Scholar

[24] C. S. T. Chang, Z. Liang, E. Schmidt and J. Banhart, Int. J. Mat. Res. 103 (2012) 955-961.

Google Scholar

[25] A. Khellaf, ASeeger and R. M. Emrick, Mater. Trans. 43 (2002) 186-198.

Google Scholar

[26] M. Doyama and J. S. Koehler, Phys. Rev. 134 (1964) A522-529.

Google Scholar

[27] C. Panseri and T. Federighi, Phil. Mag. 3 (1958) 1223-1240.

Google Scholar