Variety of Bio-Hydrocarbon Precursors for the Synthesis of Carbon Nanotubes

Article Preview

Abstract:

In this work, we have synthesized carbon nanotubes (CNT) using different bio-hydrocarbon precursors namely palm, olive, coconut, corn and sesame oils. Prior to the synthesis process, thermogravimetric analysis (TGA) characterization was performed on the carbon precursors to facilitate the optimization procedures of CNT and reach maximum yield and higher quality CNT. The CNT arrays were deposited on a silicon substrate by thermal catalytic decomposition of the precursor using 5.33 wt% ferrocene. The synthesis was carried out at 750 °C for 60 min under argon ambient. The samples were characterized using field emission scanning electron microscopy, micro-Raman spectroscopy and TGA analysis. The difference in oil density resulted in different quality and tube diameter of CNT produced. Among all, the CNT synthesized from coconut oil can be considered as the best bio-hydrocarbon precursor for higher quality (ID/IG ~0.62) and good purity (81.95 %) CNT.

You have full access to the following eBook

Info:

Periodical:

Nano Hybrids (Volume 2)

Pages:

43-63

Citation:

Online since:

August 2012

Export:

[1] J. Robertson, Realistic applications of CNTs, Mater. Today 7 (2004) 46-52.

Google Scholar

[2] N.F.A. Zainal, A.A. Azira, S.F. Nik, M. Rusop, The electrical and optical properties of PMMA/MWCNTs nanocomposite thin films, Nanocomposite Thin Films (2009) 750-754.

DOI: 10.1063/1.3160249

Google Scholar

[3] R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Carbon nanotubes the route toward applications, Science 297 (2002) 787-792.

DOI: 10.1126/science.1060928

Google Scholar

[4] Q.H. Wang, T.D. Corrigan, J.Y. Dai, R.P.H. Chang, A.R. Krauss, Field emission from nanotube bundle emitters at low fields, Appl. Phys. Lett. 70 (1997) 3308-3310.

DOI: 10.1063/1.119146

Google Scholar

[5] K. Liu, W.W., Z. Xu, X. Bai, E. Wang, Y. Yao, J. Zhang, L. Zheng, Chirality-dependent transport properties of double-walled nanotubes measured in situ on their field-effect transistors, J. Am. Chem. Soc. 131 (2009) 62.

DOI: 10.1021/ja808593v

Google Scholar

[6] M. Cadek, R. Murphy, B. McCarthy, A. Drury, B. Lahr, R.C. Barklie, M. Panhuis, J.N. Coleman, W.J. Blau, Optimisation of the arc-discharge production of multi-walled carbon nanotubes, Carbon 40 (2002) 923-928.

DOI: 10.1016/s0008-6223(01)00221-4

Google Scholar

[7] A.V. Rode, E.G. Gamaly, A.G. Christy, J. Fitz Gerald, S.T. Hyde, R.G. Elliman, B. Luther-Davies, A.I. Veinger, J. Androulakis, J. Giapintzakis, Strong paramagnetism and possible ferromagnetism in pure carbon nanofoam produced by laser ablation, J. Magn. Magn. Mater. 290-291 (2005).

DOI: 10.1016/j.jmmm.2004.11.213

Google Scholar

[8] A.B. Suriani, M. Salina, M.S.P. Sarah, R.M. Nor, A. Anuar, Y.M. Siran, S.A.M. Rejab, A.J. Asis, S. Tahiruddin, S. Abdullah, M. Rusop, Effect of temperature on the growth of vertically aligned carbon nanotubes from palm oil, Defect and Diffusion Forum 312-315 (2011).

DOI: 10.4028/www.scientific.net/ddf.312-315.900

Google Scholar

[9] A.B. Suriani, M. Salina, M.S.P. Sarah, S.A.M. Zobir, R.M. Nor, A. Anuar, Y.M. Siran, S.A.M. Rejab, A.J. Asis, S. Tahiruddin, S. Abdullah, M. Rusop, The effect of precursor vaporization temperature on the growth of vertically aligned carbon nanotubes using palm oil, Defect and Diffusion Forum 312-315 (2011).

DOI: 10.4028/www.scientific.net/ddf.312-315.906

Google Scholar

[10] M. Kumar, Y. Ando, Controlling the diameter distribution of carbon nanotubes grown from camphor on a zeolite support, Carbon 43 (2005) 533-540.

DOI: 10.1016/j.carbon.2004.10.014

Google Scholar

[11] M. Kumar, Y. Ando, Single-wall and multi-wall carbon nanotubes from camphor botanical hydrocarbon, Diamond Relat. Mater. 12 (2003) 1845-1850.

DOI: 10.1016/s0925-9635(03)00217-6

Google Scholar

[12] R. A Afre, T. Soga, T. Jimbo, M. Kumar, Y. Ando, M. Sharon, P.R. Somani, M. Umeno, Carbon nanotubes by spray pyrolysis of turpentine oil at different temperatures and their studies, Microporous Mesoporous Mater. 96 (2006) 184-190.

DOI: 10.1016/j.micromeso.2006.06.036

Google Scholar

[13] P. Ghosh, T. Soga, R.A. Afre, T. Jimbo, Simplified synthesis of single-walled carbon nanotubes from a botanical hydrocarbon: Turpentine oil, J. Alloys Compd. 462 (2008) 289-293.

DOI: 10.1016/j.jallcom.2007.08.027

Google Scholar

[14] K. Awasthi, R. Kumar, R.S. Tiwari, O.N. Srivastava, Large scale synthesis of bundles of aligned carbon nanotubes using a natural precursor: turpentine oil, J. of Experimental Nanoscience 5 (2010) 498-508.

DOI: 10.1080/17458081003664159

Google Scholar

[15] P. Ghosh, R.A. Afre, T. Soga, T. Jimbo, A simple method of producing single-walled carbon nanotubes from a natural precursor: Eucalyptus oil, Mater. Letters 61 (2007) 3768-3770.

DOI: 10.1016/j.matlet.2006.12.030

Google Scholar

[16] A.B. Suriani, M. Salina, M.S. Puteri Sarah, M.Z. Syazwan Afif, M.N. Roslan, M.S. Yosri, M.R. Syahril Anuar, J.A. Ahmad, T. Shawaluddin, S. Abdullah, M. Rusop, The effect of precursor vaporization temperature on the growth of vertically aligned carbon nanotubes using palm oil. Defect and Diffusion, ISI/SCOPUS Cited Publication 312-315(2011).

DOI: 10.4028/www.scientific.net/ddf.312-315.906

Google Scholar

[17] A.B. Suriani, A.A. Azira, S.F. Nik, R.M. Nor, M. Rusop, Synthesis of vertically aligned carbon nanotubes using natural palm oil as carbon precursor, Mater. Letters 63 (2009) 2704-2706.

DOI: 10.1016/j.matlet.2009.09.048

Google Scholar

[18] A.B. Suriani, F. Mohamad, A.A. Azira, N. Hajar, M.H. Mamat, M.S.P. Sarah, M.Z. Musa, R.M. Nor, M. Rusop, Effect of catalyst concentration on the growth of palm oil based vertically aligned carbon nanotubes, AIP Conference Proceedings 1250 (2011).

DOI: 10.1063/1.3469682

Google Scholar

[19] M.S. Azmina, A. B Suriani, A.N. Falina, M. Salina, M. Rusop, Temperature effects on the production of carbon nanotubes from palm oil by thermal vapor deposition method, Advanced Materials Research 364 (2012) 359-362.

DOI: 10.4028/www.scientific.net/amr.364.359

Google Scholar

[20] A.B. Suriani , R.M. Nor, M. Rusop, Vertically aligned carbon nanotubes synthesized from waste cooking palm oil, Journal of the Ceramics Society of Japan 118 (2010) 963-968.

DOI: 10.2109/jcersj2.118.963

Google Scholar

[21] R. Kumar, S.T. Radhey, N.S. Onkar, Scalable synthesis of aligned carbon nanotubes bundles using green natural precursor: neem oil, Nanoscale Research Letters 6 (2011) 92.

DOI: 10.1186/1556-276x-6-92

Google Scholar

[22] K. Awasthi, R. Kumar, H. Raghubanshi, S. Awasthi, R. Pandey, D. Singh, T.P. Yadav, O.N. Srivastava, Synthesis of nano-carbon (nanotubes, nanofiber, graphene) materials, Bull. Mater. Sci. 34 (2011) 607-614.

DOI: 10.1007/s12034-011-0170-9

Google Scholar

[23] S. Paul, S.K. Samdarshi, A green precursor for carbon nanotube synthesis, New Carbon Materials 26 (2011) 85-88.

DOI: 10.1016/s1872-5805(11)60068-1

Google Scholar

[24] M.S. Azmina, A.B. Suriani, A.N. Falina, M. Salina, J. Rosly, M. Rusop, Preparation of palm oil based carbon nanotubes at various ferrocene concentration, Advance Materials Research 364 (2012) 408-411.

DOI: 10.4028/www.scientific.net/amr.364.408

Google Scholar

[25] S. Maghsoodi, Z. Gholami, H. Chourchian, Y. Mortazavi, A.A. Khodadadi, A novel biosensor using entangled carbon nanotubes layer grown on an alumina substrate by CCVD of methane on FeOx-MgOx, Sensors Actuat. B-Chem. 141 (2009) 526-531.

DOI: 10.1016/j.snb.2009.06.042

Google Scholar

[26] B. Bahrami, A. Khodadadi, Y. Mortazavi, M. Esmaieli, Short time synthesis of high quality carbon nanotubes with high rates by CVD of methane on continuously emerged iron nanoparticles, Appl. Surf. Sci. 257 (2011) 9710-9716.

DOI: 10.1016/j.apsusc.2011.05.086

Google Scholar

[27] C.M. Seah, S.P. Chai, A.R. Mohamed, Synthesis of aligned carbon nanotubes, Carbon 49 (2011) 4613-4635.

DOI: 10.1016/j.carbon.2011.06.090

Google Scholar

[28] Z.F. Ren, Z.P. Huang, J.W. Xu, J.H. Wang, P. Bush, M.P. Siegal, P.N. Provencio, Synthesis of large arrays of well-aligned carbon nanotubes on glass, Science 282 (1998) 1105-1107.

DOI: 10.1126/science.282.5391.1105

Google Scholar

[29] P.T. Williams, E.A. Williams, Fluidised bed pyrolysis of low density polyethylene to produce petrochemical feedstock, J. Anal. Appl. Pyrol. 51 (1999) 107-126.

DOI: 10.1016/s0165-2370(99)00011-x

Google Scholar

[30] S. Zhu, H. Zhang, R. Bai, Microwave-accelerated dissolution of MWNT in aniline, Mater. Lett. 61 (2007) 16-18.

DOI: 10.1016/j.matlet.2006.03.142

Google Scholar

[31] M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Raman spectroscopy of carbon nanotubes, Phys. Rep. 10 (2004) 1016.

Google Scholar

[32] D. Bom, R. Andrews, D. Jacques, J. Anthony, B. Chen, M.S. Meier, J.P. Selegue, Thermogravimetric analysis of the oxidation of multiwalled carbon nanotubes: evidence for the role of defect sites in carbon nanotube chemistry, Nano Letters 2 (2002).

DOI: 10.1021/nl020297u

Google Scholar

[33] C. M. Chen, M. Chen, F.C. Leu, S.Y. Hsu, S.C. Wang, S.C. Shi, C.F. Chen, Purification of multi-walled carbon nanotubes by microwave digestion method, Diamond Relat. Mater. 13 (2004) 1182-1186.

DOI: 10.1016/j.diamond.2003.11.016

Google Scholar