ZnO Nanoparticles to Nanowires and Nanobundles

Article Preview

Abstract:

Nanosized Zinc oxide (ZnO) possesses unique electrical, optoelectronics and photochemical characteristics and thus it is a potential candidate for different applications in next generation of optoelectronic device. In this work, a novel sol-gel route for the synthesis of ZnO nanoparticles and its transformation into wires and bundles has been reported. The process is adopted from a simple and hand-on route that also shows the power of green chemistry in nanomaterials synthesis. ZnO nanoparticles (~30 nm in diameter) were synthesized from bottom-up approach followed by a further process to obtain nanometric wires and bundles under controlled conditions. The nanowires and bundles are speculated to initiate from anisotropic agglomeration of nanometric particles and agglomeration of these nanometric wires into bundles respectively. Control of these agglomeration processes is a key challenge for application of nanowires and bundles into useful devices.

You have full access to the following eBook

Info:

Periodical:

Nano Hybrids (Volume 3)

Pages:

115-124

Citation:

Online since:

January 2013

Export:

[1] R. Kaur, A.V. Singh, K. Sehrawat, N.C. Mehra, R.M. Mehra, Sol–gel derived yttrium doped ZnO nanostructures, J. Non-Cryst. Solids 352 (2006) 2565-2568.

DOI: 10.1016/j.jnoncrysol.2006.01.090

Google Scholar

[2] J. Kubota, K. Haga, Y. Kashiwaba, H. Watanabe, B.P. Zhang, Y. Segawa, Characteristics of ZnO whiskers prepared from organic-zinc, Appl. Surf. Sci. 216 (2003) 431-435.

DOI: 10.1016/s0169-4332(03)00388-x

Google Scholar

[3] S. Singh, P. Thiyagarajan, K.M. Kant, D. Anita, S. Thirupathiah, N. Rama, B. Tiwari, M. Kottaisamy, M.S.R. Rao, Structure, microstructure and physical properties of ZnO based materials in various forms: bulk, thin film and nano, J. Phys. D: Appl. Phys. 40 (2007).

DOI: 10.1088/0022-3727/40/20/s15

Google Scholar

[4] P.K. Giri, S. Bhattacharyya, B. Chetia, S. Kumari, D.K. Singh, P.K. Iyer, High-yield chemical synthesis of hexagonal ZnO nanoparticles and nanorods with excellent optical properties, J. Nanosci. Nanotech. 11 (2011) 1-6.

DOI: 10.1166/jnn.2012.5113

Google Scholar

[5] J. Carrey, H. Carrere, M.L. Kahn, B. Chaudret, X. Marie, M. Respaud, Photoconductivity of self-assembled ZnO nanoparticles synthesized by organometallic chemistry, Semicond. Sci. Technol. 23 (2008) 025003-025008.

DOI: 10.1088/0268-1242/23/2/025003

Google Scholar

[6] R. Hong, T. Pan, J. Qian, H. Li, Synthesis and surface modification of ZnO nanoparticles, Chem. Eng. J. 119 (2006) 71-81.

Google Scholar

[7] C. Wu, X. Qiao, J. Chen, H. Wang, F. Tan, S. Li, A novel chemical route to prepare ZnO nanoparticles, Mater. Lett. 60 (2006) 1828-1832.

DOI: 10.1016/j.matlet.2005.12.046

Google Scholar

[8] D.C. ‏ Reynolds, D.C. Look, B. Jogai, Fine structure on the green band in ZnO, J. Appl. Phys. 89 (2001) 6189-6191.

DOI: 10.1063/1.1356432

Google Scholar

[9] K. Westermark, H. Rensmo, A.C. Lees, J.G. Vos, H. Siegbahn, Electron spectroscopic studies of Bis-(2, 2'-bipyridine)-(4, 4'-dicarboxy-2, 2'-bipyridine)-ruthenium(II) and Bis-(2, 2'-bipyridine)-(4, 4'-dicarboxy-2, 2'-bipyridine)-osmium(II) adsorbed on nanostructured TiO2 and ZnO surfaces, Phys. Chem. B 106 (2002).

DOI: 10.1021/jp014218z

Google Scholar

[10] Y. Zhang, K. Yu, D. Jiang, Z. Zhu, H. Geng, L. Luo, Zinc oxide nanorod and nanowire for humidity sensor, Appl. Surf. Sci. 242 (2005) 212-217.

DOI: 10.1016/j.apsusc.2004.08.013

Google Scholar

[11] Q.H. Li, T. Gao, Y.G. Wang, T.H. Wang, Adsorption and desorption of oxygen probed from ZnO nanowire films by photocurrent measurements, Appl. Phys. Lett. 86 (2005) 123117-123119.

DOI: 10.1063/1.1883711

Google Scholar

[12] Z. Fan, D. Wang, P.C. Chang, W.Y. Tseng, J.G. Lu, ZnO nanowire field-effect transistor and oxygen sensing property, Appl. Phys. Lett. 85 (2004) 5923-5925.

DOI: 10.1063/1.1836870

Google Scholar

[13] Z. Fan, J.G. Lu, Electrical properties of ZnO nanowire field effect transistors characterized with scanning probes, Appl. Phys. Lett. 86 (2005) 032111-032113.

DOI: 10.1063/1.1851621

Google Scholar

[14] M.H. Huang, S. Mao, H. Feick, H.Q. Yan, Y.Y. Wu, H. Kind, E. Weber, R. Russo, P.D. Yang, Room-temperature ultraviolet nanowire nanolasers, Science 292 (2001), 1897-1899.

DOI: 10.1126/science.1060367

Google Scholar

[15] M. Salavati-Niasari, N. Mir, F. Davar, ZnO nanotriangles: Synthesis, characterization and optical properties, J. Alloys and Comp. 476 (2009) 908-912.

DOI: 10.1016/j.jallcom.2008.09.196

Google Scholar

[16] M. Adachi, S. Tsukui, K. Okuyama, Nanoparticle Formation mechanism in CVD reactor with ionization of source vapor, J. Nanoparticles Res. 5 (2003) 31-37.

DOI: 10.1023/a:1024424518822

Google Scholar

[17] S. Muthukumar, H. Sheng, J. Zhong, Z. Zhang, N.W. Emanetoglu, Y Lu, Selective MOCVD growth of ZnO nanotips, IEEE Trans. on Nanotech. 2 (2003) 50-54.

DOI: 10.1109/tnano.2003.809120

Google Scholar

[18] A. Sanchez-Juarez, A. Tiburcio-Silver, A. Ortiz, E.P. Zironi, J. Rickards, Electrical and optical properties of fluorine-doped ZnO thin films prepared by spray pyrolysis, Thin Solid Films 333 (1998) 196-202.

DOI: 10.1016/s0040-6090(98)00851-7

Google Scholar