Processing Metals by Severe Plastic Deformation

Article Preview

Abstract:

Severe plastic deformation (SPD) is used to convert traditional coarse grain metals and alloys into ultrafine-grained (UFG) materials. UFG materials possess a number of improved mechanical and physical properties which destine them for a wide commercial use. However, any attempt to use SPD technology commercially requires a better insight into the mechanics and practicality of SPD processes. This paper looks into historical development of SPD processes and focuses on such aspects of SPD as material flow, role of hydrostatic pressure, friction, geometry of tools, billet and feeding considerations, technical feasibility, etc. The discussion of these topics sets a background for decisions concerning further research and commercialisation of SPD.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 101-102)

Pages:

13-22

Citation:

Online since:

January 2005

Export:

Price:

[1] T.C. Lowe and R.Z. Valiev (Eds. ): Investigations and Applications of Severe Plastic Deformation (Kluwer, Dordrecht, 2000).

Google Scholar

[2] M. Zehetbauer (Ed. ): Nanomaterials by Severe Plastic Deformation: Fundamentals, Processing, Applications (Viley-VCH, 2003).

Google Scholar

[3] V.M. Segal, USSR: Pat. No. 575892, (1977).

Google Scholar

[4] V.M. Segal, V.I. Reznikov, A.E. Drobyshevskiy and V.I. Kopylov: Russ. Metall. (Engl. Transl. ) Vol. 1 (1981), p.99.

Google Scholar

[5] V.M. Segal: Mat. Sci. Eng. Vol. A345 (2003), p.36.

Google Scholar

[6] V.M. Segal: Mat. Sci. Eng. Vol. A338 (2002), p.331.

Google Scholar

[7] V.M. Segal: U.S. Patent No. 5513512, (1996).

Google Scholar

[8] T.G. Langdon, M. Furukawa, M. Nemoto and Z. Horita: JOM Vol. 52 (2000) No. 4, p.30.

Google Scholar

[9] S. Komura, M. Furukawa, Z. Horita, M. Nemoto, T.G. Langdon: Mat. Sci. Eng. Vol. A297 (2001), p.111.

Google Scholar

[10] P.B. Prangnell, A. Gholinia, M.V. Markushev: in T.C. Lowe and R.Z. Valiev (Eds. ), Investigations and Applications of Severe Plastic Deformation (Kluwer, Dordrecht, 2000), p.65.

Google Scholar

[11] D.P. DeLo and S.L. Semiatin: Metall. Mater. Trans. Vol. 30A (1999), p.2473.

Google Scholar

[12] S. L Semiatin, D.P. DeLo: U.S. Patent No. 5904062, (1999).

Google Scholar

[13] V.M. Segal: U.S. Patent No. 5400633, (1995).

Google Scholar

[14] V.M. Segal: U.S. Patent No. 5850755, (1998).

Google Scholar

[15] M.V. Markushev, V.N. Sloboda, O.A. Kaibyshev: Russian Patent No. 2146571, (2000).

Google Scholar

[16] Y. Nishida, S. Kume, T. Imai: U.S. Patent No. 6209379B1, (2001).

Google Scholar

[17] Y. Nishida, H. Arima, J.C. Kim and T. Ando: Scripta Mater. Vol. 45 (2001), p.261.

Google Scholar

[18] Y. Saito, H. Utsunomiya, H. Suzuki: in M. Geiger (Ed), Advanced Technology of Plasticity (Springer, 1999), p.2459.

Google Scholar

[19] J.C. Lee, H.K. Seok, J.H. Han, Y.H. Chung: Mater. Res. Bull. Vol. 36 (2001), p.997.

Google Scholar

[20] A.B. Suriadi and P.F. Thomson: Proc. of Australasia-Pacific Forum on Intelligent Processing & Manufacturing of Materials (IPMM 1997), p.920.

Google Scholar

[21] Z.Y. Liu, G.X. Liang, E.D. Wang, Z.R. Wang: Mat. Sci. Eng. Vol. A242 (1998), p.137.

Google Scholar

[22] K. Nakashima, Z. Horita, M. Nemoto, T.G. Langdon: Mat. Sci. Eng. Vol. A281 (2000), p.82.

Google Scholar

[23] L. Zuyan, L. Gang, Z.R. Wang: J. Mater. Process. Techn. Vol. 102 (2000), p.30.

Google Scholar

[24] M. Ono, H. Mizufune, M. Narita: Proc. of the 7 th International Conference on Technology of Plasticity, Yokohama, Oct. 28-31, 2002, p.1249.

Google Scholar

[25] A. Rosochowski, L. Olejnik: J. Mater. Process. Techn. Vol. 125-126 (2002), p.309.

Google Scholar

[26] J. Richert, M. Richert, J. Zasadzinski and A. Korbel: Patent PRL No. 123026, (1979).

Google Scholar

[27] A. Korbel, M. Richert and J. Richert: Proc. 2nd Risø Int. Symp. on Metallurgy and Material Science, Roskilde, September 14-18, 1981 (Risø National Laboratory, Roskilde, 1981), p.445.

Google Scholar

[28] M. Richert, H.J. McQueen and J. Richert: Can. Metall. Quart. Vol. 37 (1998), p.449.

Google Scholar

[29] Jien-Wei Yeh: U. S. Patent 5571348, (1996).

Google Scholar

[30] V.M. Greshnov, O.V. Golubyev, A.V. Rtishchev: Kuznechno-Shtampovochnoye Proizvodstvo (Forging and Stamping Production) (1997), No 2, p.8.

Google Scholar

[31] A. Rosochowski, R. Rodiet, P. Lipinski: Proc. of the 8th Int. Conference Metalforming 2000, Krakow, September, 2000, p.253.

Google Scholar

[32] P.W. Bridgman: Physical Review Vol. 48 (1935), p.825.

Google Scholar

[33] S. Erbel: Met. Technol. (1979), p.482.

Google Scholar

[34] R.Z. Valiev, N.A. Krasilnikov and N.K. Tsenev: Mat. Sci. Eng. Vol. A137 (1991), p.35.

Google Scholar

[35] R.Z. Valiev: Mat. Sci. Eng. Vol. A234-236 (1997), p.59.

Google Scholar

[36] O.N. Senkov, F.H. Froes, V.V. Stolyarov, R.Z. Valiev and J. Liu: Scripta Mater. Vol. 38 (1998), p.1511.

DOI: 10.1016/s1359-6462(98)00073-6

Google Scholar

[37] S.C. Shrivastava, J. J Jonas and G. Canova: J. Mech. Phys. Solids Vol. 30 (1982), p.75.

Google Scholar

[38] A.K. Ghosh: U. S. Patent No. 4721537, (1988).

Google Scholar

[39] Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai and R.G. Hong: Scripta Mater. Vol. 39 (1998), p.1221.

Google Scholar

[40] Y.T. Zhu, T.C. Lowe, H. Jiang, J. Huang: U.S. Patent No. 6197129 B1, (2001).

Google Scholar

[41] J.Y. Huang, Y.T. Zhu, H. Jiang and T.C. Lowe: Acta Mater. Vol. 49 (2001), p.1497.

Google Scholar

[42] A. K Ghosh and W. Huang: in T.C. Lowe and R.Z. Valiev (Eds. ) Investigations and Applications of Severe Plastic Deformation (Kluwer, Dordrecht, 2000), p.29.

Google Scholar