Synthesis of Diamond Particles under Alkaline Hydrothermal Conditions

Article Preview

Abstract:

Very fine diamond powder (1-3 ~m) was readily sintered under hydrothermal conditions, with new bond formation occurring between the diamond particles in a l0M-NaOH solution at 573 K maintained at 1 GPa pressure, for 24 hours. This new bonding material can be formed by carbonization, from a chlorinated hydrocarbon such as dichloromethane and 1, 1,1–trichloroethane. The carbonized material forms a new bond between the hydrogenated diamond particles by the release of hydrogen chloride. Using Raman spectroscopy and hydrogenated cubic boron nitride substrates it was indisputably demonstrated that diamond was synthesized under these alkaline hydrothermal conditions. The surface morphology of the hydrothermal product on the cubic boron was similar to the new growth on the diamond substrates.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 114)

Pages:

271-276

Citation:

Online since:

July 2006

Export:

Price:

[1] S. Sawai, K. Kondo, J. Amer. Ceram Soc., 73, 2428 (1990).

Google Scholar

[2] Y. Moriyoshi, M. Kano, N. Setaka, Y. Sato, J. Mater. Sci., l8 (1983), 217-224.

Google Scholar

[3] J.V. Smith, J. B. Dawson, Geology, 13, 342-343 (1985).

Google Scholar

[4] J . P . Dismukes P.R. Gaines, H. Witzke, D.P. Leta, B.H. Kear, S.K. Behal., S.B. Rice, Mat. Sci. Eng. A., 105/106, 555-563 (1988).

DOI: 10.1016/0025-5416(88)90743-4

Google Scholar

[5] H. Kagi, S. Masuda, Naturwissenschaften, 78, 355-358 (1991 ).

Google Scholar

[6] K. Shibata, H. Kamioka, Mineral Magaz., 57, 607-611 (1993).

Google Scholar

[7] H. Kagi, K. Takahashi, H. Hidaka, A. Masuda, Geochim Cosmochim. Acta., 58 (12), 2629-2638 (1994).

Google Scholar

[8] H. Kamoka, K. Shibata, I. Kajizuka, T. Ohata, Geochem. Jour., 30, 189-194 (1996).

Google Scholar

[9] A.I. Gorshkov, L.V. Bershov, S.F. Vinokurov, K L. Oton, A.V. Sivtov, Geol. Ore. Deposits, 39 (3), 229-236 (1997).

Google Scholar

[10] K.D. Corte, P. Cartigny, V.S. Shatsky, N.V. Sobolev, M. Javoy, Geochim. Cosmochim. Acta, 62 ( 23/24), 3765-3773 (1998).

DOI: 10.1016/s0016-7037(98)00266-x

Google Scholar

[11] J.H. Chen, D. Bemaerts, J.W. Seo, G.V. Tenceloo, Phlosophical Magaz. Lett., 77 (3), 135-140 (1998).

Google Scholar

[12] M. Ozima, S. Zashu, K. Tomura,. Y. Matsuhisa, Nature, 351, 6, 472-474 (1991).

DOI: 10.1038/351472a0

Google Scholar

[13] J.V. Smith, J. B, Dawson, Geology, 13, 342 (1985).

Google Scholar

[14] R.W. Grindler, P. T'. Taylor, J.J. Frawley, Tectonophysics, 212, 45 ( 1992).

Google Scholar

[15] N. Yamasaki , S. Kanahara, K. Matuoka, M. Tsubouchi, Jour. Chem. Soc., Jpn, (11). l828-1830 (1981).

Google Scholar

[17] N. Yamasaki, Jour. Petrol. lnst. Jpn., 41 (3), 175 (1998).

Google Scholar

[18] N. Yamasaki, K. Hosoi, K. Yanagisawa, Jour. Chem. Soc. Jpn., (11 ), 1909 (1988).

Google Scholar