Features of Twist Extrusion: Method, Structures & Material Properties

Article Preview

Abstract:

During the last decade it has been shown that severe plastic deformation (SPD) is a very effective for obtaining ultra-fine grained (UFG) and nanostructured materials. The basic SPD methods are High Pressure Torsion (HPT) and Equal Channel Angular Extrusion (ECAE). Recently several new methods have been developed: 3D deformation, Accumulative Roll Bonding, Constrained Groove Pressing, Repetitive Corrugation and Straightening, Twist Extrusion (TE), etc. In this paper the twist extrusion method is analyzed in terms of SPD processing and the essential features from the “scientific” and “technological” viewpoint are compared with other SPD techniques. Results for commercial, 99.9 wt.% purity, copper processed by TE are reported to show the effectiveness of the method. UFG structure with an average grain size of ~0.3 μm was produced in Cu billets by TE processing. The mechanical properties in copper billets are near their saturation after two TE passes through a 60º die. Subsequent processing improves homogeneity and eliminates anisotropy. The homogeneity of strength for Cu after TE is lower than after ECAE by route BC, but higher than after ECAE by route C. The homogeneity in ductility characteristics was of almost of inverse character. The comparison of mechanical properties inhomogeneity in Cu after TE and ECAE suggests that alternate processing by ECAE and TE should give the most uniform properties.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 114)

Pages:

69-78

Citation:

Online since:

July 2006

Export:

Price:

[1] R.Z. Valiev: Nature Materials, Vol. 3 (2004), p.511.

Google Scholar

[2] Ultrafine Grained Materials III. Ed. by Y.T. Zhu, T.G. Langdon, R.Z. Valiev, S.L. Semiatin, D.H. Shin, and T.C. Lowe. TMS (The Minerals, Metals & Materials Society) (2004).

Google Scholar

[3] M.J. Zehetbauer, H.P. Stuwe, A. Vorhauer, E. Schafler and J. Kohout: Nanomaterials by severe plastic deformation. Edited by Zehetbauer MJ, Valiev RZ; Weinheim, Germany: Wiley-VCH; (2004) pp.435-446.

DOI: 10.1002/3527602461.ch8a

Google Scholar

[4] T.C. Lowe: Materials Science Forum, Vol. 503-504 (2006) pp.355-362.

Google Scholar

[5] Beygelzimer Y., Orlov D. and Varyukhin V.: Ultrafine Grained Materials II; Ed. By Y.T. Zhu, T.G. Langdon, R.S. Mishra, S.L. Semiatin, M.J. Saran, T.C. Lowe. TMS (The Minerals, Metals & Materials Society) (2002). p.297.

DOI: 10.1002/9781118804537

Google Scholar

[6] Y. Beygelzimer, V. Varyukhin, D. Orlov, S. Synkov: Twist extrusion - process for strain accumulation (Donetsk: TEAN 2003) [In Russian].

Google Scholar

[7] Y. Beygelzimer: Mechanics of Materials V. 37 (2005), P. 753.

Google Scholar

[8] D. Orlov, A. Reshetov, A. Synkov, V. Varyukhin, D. Lotsko, O. Sirko, N. Zakharova, A. Sharovsky, V. Voropaiev, Yu. Milman and S. Synkov: Y.T. Zhu and V. Varyukhin (eds. ), Nanostructured materials by high pressure severe plastic deformation, NATO Science Series, II Mathematics, Physics and Chemistry - V. 212 (2006).

DOI: 10.1007/1-4020-3923-9_10

Google Scholar

[9] Beygelzimer Y., Varyukhin V., Orlov D., Efros B., Stolyarov V. and Salimgareyev H.: Ultrafine Grained Materials II. Ed. By Y.T. Zhu, T.G. Langdon, R.S. Mishra, S.L. Semiatin, M.J. Saran, T.C. Lowe; TMS (The Minerals, Metals & Materials Society) (2002).

DOI: 10.1002/9781118804537.ch5

Google Scholar

[10] D.V. Orlov, V.V. Stolyarov, H. Sh. Salimgareyev, E.P. Soshnikova, A.V. Reshetov, Ya. Ye. Beygelzimer, S.G. Synkov and V.N. Varyukhin: Ultrafine Grained Materials III. Ed. by Y.T. Zhu, T.G. Langdon, R.Z. Valiev, S.L. Semiatin, D.H. Shin, and T.C. Lowe; TMS (The Minerals, Metals & Materials Society) (2004).

DOI: 10.1002/9781118804537.ch5

Google Scholar

[11] V.V. Stolyarov, Ya.E. Beigel'zimer, D.V. Orlov, and R.Z. Valiev: The Physics of Metals and Metallography, Vol. 99 (2005), No. 2, p.204.

Google Scholar

[12] Y. Beygelzimer, V. Varyukhin, D. Orlov, S. Synkov, A. Spuskanyuk, Y. Pashinska: Nanomaterials by severe plastic deformation. Ed. by Zehetbauer MJ, Valiev RZ; Weinheim, Germany: Wiley-VCH; (2004), p.511.

DOI: 10.1002/3527602461.ch9e

Google Scholar

[13] Beygelzimer Y., Orlov D.: Defect and Diffusion Forum, V. 208-209 (2002), p.311.

Google Scholar

[14] V. Varyukhin, Y. Beygelzimer, S. Synkov and D. Orlov: Materials Science Forum, Vol. 503504 (2005), p.335.

Google Scholar

[15] A.I. Korshunov, I.I. Vedernikova, L.V. Polyakov, T.N. Kravchenko, A.A. Smolyakov, P.N. Nizovtsev: Y.T. Zhu and V. Varyukhin (eds. ), Nanostructured materials by high pressure severe plastic deformation, NATO Science Series, II Mathematics, Physics and Chemistry - V. 212 (2006).

DOI: 10.1007/1-4020-3923-9_35

Google Scholar

[16] A.I. Korshunov, I.I. Vedernikova, L.V. Polyakov, T.N. Kravchenko, A.A. Smolyakov and V.P. Soloviev: Reviews in Advanced Materials Science, Vol. 10 (2005), No. 3 p.235.

Google Scholar

[17] A.I. Korshunov, I.I. Vedernikova, L.V. Polyakov, T.N. Kravchenko, A.A. Smolyakov, V.P. Solovyov: Materials Science Forum, Vol. 503-504 (2005), p.693.

Google Scholar

[18] I.P. Semenova, L.A. Saitova, G.I. Raab, A.I. Korshunov, Y.T. Zhu, T.C. Lowe, R.Z. Valiev: Materials Science Forum, Vol. 503-504 (2005), p.757.

DOI: 10.4028/www.scientific.net/msf.503-504.757

Google Scholar

[19] V.M. Segal: Materials Science and Engineering A, Vol. 271 (1999), p.322.

Google Scholar

[20] Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, T.G. Langdon: Scripta Materialia, Vol. 35 (1996), No. 2 p.143.

Google Scholar