Yttrium Iron Garnet: Properties and Applications Review

Article Preview

Abstract:

Due to a fast progress in the development of communication systems, the dielectric and magnetic ceramics (ferrites) have become attractive to be used in devices. Although the ferrites of the spinel type were the first material to be used in the microwave range, garnets have smaller dielectric losses and, therefore, are chosen for many applications. High demands for modern electric applications in magnetic materials results in new techniques and products being permanently studied and researched, with a consequent appearance of new solutions for a wide applications series. This work presents the study of the ferrimagnetic composite, constituted by Y3Fe5O12 (YIG) and Gd3Fe5O12 (GdIG) phases, through solid state synthetic route and submitted to high-energy mechanical milling. Additionally, experiments were made in order to evaluate the electric and magnetic behavior of the composites at radio frequency and microwave range and then later suggest an adequate technological application. The composites were efficient as ferrite resonator antennas (FRAs) and microstrip antennas (thick films deposited on metalized surface alumina substrate by screen-printing technique), in the microwave frequency range. The experiments with FRAs showed satisfactory results due to the control of the antennas radiation characteristics and their tuning by the use of an external magnetic field. The composite resonators studied in this work can be important to the development of a third generation (3G) wideband antennas to cell phones and other wireless products.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 202)

Pages:

65-96

Citation:

Online since:

May 2013

Export:

Price:

[1] D. Badahur, Current Trends in Applications of Magnetic Ceramic Materials, Bull. Mater. Sci. 15 (1992) 431-439.

Google Scholar

[2] A. B. Ustinov, V. S. Tiberkevich, G. Srinivasan, A. N., Slavin, A. A. Semenov, S. F. Karmanenko, B. A. Kalinikos, J. V. Mantese, R. Ramer, Multiferroic magnetoelectric composites: Historical perspective, status, and future directions, J. Appl. Phys. 100 (2006) 93905-93907.

DOI: 10.1063/1.2372575

Google Scholar

[3] J. P. Ganne, R. Lebourgeois, M. Paté, D. Dubreuil, L. Pinier, H. Pascard, The electromagnetic properties of Cu–substituted garnets with low sintering temperature, , J. Eur. Ceram. Soc. 27 (2007) 2771–2777.

DOI: 10.1016/j.jeurceramsoc.2006.11.054

Google Scholar

[4] J. D. Adam, L. E. Davis, G. F. Dionne, E. F. Schloemann, S. N. Stitzer, Ferrite devices and materials, IEEE T. Microw. Theory. 50 (2002) 721-737.

DOI: 10.1109/22.989957

Google Scholar

[5] Y.F. Chen, K.T. Wu, Y.D. Yao, C.H. Peng, K.L. You, W.S. Tse, The influence of Fe concentration on Y3Al5-xFexO12 garnets, Microelectron. Eng. 81 (2005) 329–335.

DOI: 10.1016/j.mee.2005.03.028

Google Scholar

[6] M. Huang, S. Zhang, Growth and characterization of rare-earth iron garnet single crystals modified by bismuth and ytterbium substituted for yttrium, Mater. Chem. Phys. 73 (2002) 314-317.

DOI: 10.1016/s0254-0584(01)00365-0

Google Scholar

[7] R. Valenzuela, Magnetic ceramics, Cambridge University Press, New York, 1994.

Google Scholar

[8] M. Barsoum, Fundamentals of Ceramics, McGraw-Hill Companies, Inc., New York, 1997.

Google Scholar

[9] B. Ellis, M. J. Geselbracht, B. J. Johnson, G. C. Lisensky, W. R. Robinson, Teaching General Chemistry: A Materials Science Companion, Am. Chem. Soc, Washington, 1993.

Google Scholar

[10] P.B.A. Fechine, Estudo das propriedades estruturais e elétricas das granadas ferrimagnéticas GdIGxYIG1-x e suas aplicações em componentes de microondas, doctorate thesis, Universidade Federal do Ceará, Brasil, 2008, p.42.

Google Scholar

[11] T. Kimura, H. Takizawa, K. Uheda, T. Endo, M. Shimada, Microwave Synthesis of Yttrium Iron Garnet Powder, J. Am. Ceram. Soc. 81 (1998) 2961–2964.

DOI: 10.1111/j.1151-2916.1998.tb02720.x

Google Scholar

[12] R. Y.S. Ahn, M. H.Han, C.O. Kim, Synthesis of yttrium iron garnet precursor particles by homogeneous precipitation, J. Mater. Sci. 31 (1996) 4233-4240.

DOI: 10.1007/bf00356444

Google Scholar

[13] D. Sánchez, C. A. Ramos, J. Rivas, P. Vaqueiro, M. A. López-Quintela, Ferromagnetic resonance and magnetic properties of single-domain particles of Y3Fe5O12 prepared by sol-gel method, Physica B. 354 (2004) 104–107.

DOI: 10.1016/j.physb.2004.09.028

Google Scholar

[14] V. Buscaglia, F. Caracciolo, C. Bottino, M. Leoni, P. Nanni, Reaction diffusion in the Y2O3- Fe2O3 system, Acta mater. 45 (1997) 1213-1224.

DOI: 10.1016/s1359-6454(96)00246-7

Google Scholar

[15] L. B. Kong, J. Ma, H. Huang, Low temperature formation of yttrium aluminum garnet from oxides via a high-energy ball milling process, Mater. Lett. 56 (2002) 344-348.

DOI: 10.1016/s0167-577x(02)00480-9

Google Scholar

[16] X. Z. Guo, B. G. Ravi, P. S. Deci, J. C. Hanson, J. Morgolies, R. J. Gambino, J. B. Parise, S. Sampath, Synthesis of yttrium iron garnet (YIG) by citrate–nitrate gel combustion and precursor plasma spray processes, J. Magn. Magn. Mater.. 295 (2005) 145-154.

DOI: 10.1016/j.jmmm.2005.01.007

Google Scholar

[17] T. C. Mao, J. C. Chen, Influence of the addition of CeO2 on the microstructure and the magnetic properties of yttrium iron garnet ceramic, J. Magn. Magn. Mater , 302 (2006) 74-81.

DOI: 10.1016/j.jmmm.2005.08.018

Google Scholar

[18] K. Shinagawa, E. Tobita, T. Saito, T. Tsushima, Faraday effect in (Pb2+, Th4+)-substituted magnetic garnets, J. Magn. Magn. Mater. 251 (1998) 177-181.

DOI: 10.1016/s0304-8853(97)00918-9

Google Scholar

[19] C.Y. Tsay, C.Y. Liu, K.S. Liu, I.N. Lin, L.J. Hu, T.S. Yeh, Low temperature sintering of microwave magnetic garnet materials, J. Magn. Magn. Mater. 239 (2002) 490-494.

DOI: 10.1016/s0304-8853(01)00669-2

Google Scholar

[20] S. C. Zanatta, L. F. Cótica, A. Paesano, Jr., S. N. de Medeiros, J. B. M. da Cunha, B. Hallouche, Mechanosynthesis of Gadolinium Iron Garnet, J. Am. Ceram. Soc . 88 (2005) 3316-3321.

DOI: 10.1111/j.1551-2916.2005.00598.x

Google Scholar

[21] A. S. Hudson, Molecular engineering in the design of microwave ferrimagnetic garnets, J. Phys. D: Appl. Phys. 3 (1970) 251-268.

DOI: 10.1088/0022-3727/3/3/204

Google Scholar

[22] P. B. A. Fechine, E. N. Silva, A. S. de Menezes, J. Derov, J. W. Stewart, A. J. Drehman, I. F Vasconcelos, A. P. Ayala, L. P. Cardoso and A. S. B. Sombra, Synthesis, Structure and Vibracional Properties of GdIGX:YIG1-X Ferrimagnetic Ceramic Matrix Composite, J. Phys. Chem. Solids. 70 (2009) 202–209.

DOI: 10.1016/j.jpcs.2008.10.008

Google Scholar

[23] M. Ristic´, I. Nowik, S. Popovic´, I. Felner, S. Music´, Influence of synthesis procedure on the YIG formation, Mater. Lett. 57 (2003) 2584-2590.

DOI: 10.1016/s0167-577x(02)01315-0

Google Scholar

[24] P. Vaqueiro, M. P. Crosnier-Lopez and M. A. López-Quintela, Synthesis and Characterization of Yttrium Iron Garnet Nanoparticles, J. Solid State Chem 126 (1996) 161-168.

DOI: 10.1006/jssc.1996.0324

Google Scholar

[25] J. S. Kum, S. J. Kim, In-Bo Shim, C. S. Chul Sung Kim, Magnetic properties of Ce- substituted yttrium iron garnet ferrite powders fabricated using a sol-gel method, J. Magn. Magn. 272 (2004) 2227-2229.

DOI: 10.1016/j.jmmm.2003.12.516

Google Scholar

[26] R. D., Shannon, C. T., Prewitt, The crystal and molecular structure of anti-2,6-dimethyl-4- chloro-N-methylbenzaldoxime, Acta Cryst. B25 (1969) 916-925.

Google Scholar

[27] D. L. Rousseau, R. P.Bauman, S. P. S.Porto, Normal mode determination in crystals, J. Raman Spectrosc. 10 (1981) 253-290.

DOI: 10.1002/jrs.1250100152

Google Scholar

[28] N. T. J.McDevitt, Substrate issues for the growth of mercury cadmium telluride, Opt. Soc. Am. 57 (1967) 827-834.

Google Scholar

[29] A. M.Hofmeister, K. R.Campbell, Infrared spectroscopy of yttrium aluminum, yttrium gallium, and yttrium iron garnets, J. Appl. Phys. 72 (1992) 638-646.

DOI: 10.1063/1.351846

Google Scholar

[30] S. Mathur, M. Veith, R. Rapalaviciute, H. Shen, G. F. Goya, W. L. Martins, T. S. Berquo, Molecule derived synthesis of nanocrystalline YFeO3 and investigations on its weak ferromagnetic behavior, Chem. Mater. 16 (2004) 1906-1913.

DOI: 10.1021/cm0311729

Google Scholar

[31] D. Vandormael, F. Grandjean, D.Hautot, G. J. Long, Mössbauer spectral evidence for rhombohedral symmetry in R3Fe5O12 garnets with R = Y, Eu and Dy, J. Phys.: Condens. Matter. 13 (2001) 1759-1772.

DOI: 10.1088/0953-8984/13/8/312

Google Scholar

[32] T. C. Gibb, In: Mössbauer Spectroscopy. V. 5. Encyclopedia of inorganic chemistry, John Wiley & Sons, Chichester, 1994, pp.2362-2382.

Google Scholar

[33] D. M. Pozar, Microwave Engineering, second edition, John Wiley & Sons, INC., New York, 1998.

Google Scholar

[34] A. J. Moulson, J. M. Herbert, Electroceramics: Materials - Properties – Aplications, second edition, John Wiley & Sons Inc., New York, 2003, p.300.

Google Scholar

[35] K.- M. Luk, K.- W. Leung, Dielectric Resonator Antennas, Research Studies Press LTD, first edition, Hertfordshire, 2003.

Google Scholar

[36] Z. Peng, H. Wang, X. Yao, Dielectric resonator antennas using high permittivity ceramics, Ceram. Int. 30 (2004) 1211-1214.

DOI: 10.1016/j.ceramint.2003.12.079

Google Scholar

[37] D. M. Pozar, Microwave Engineering, second edition, John Wiley & Sons Inc., New York, 1998, p.665.

Google Scholar

[38] Z. Wu, L. E. Davis, G. Drossos, Cylindrical dielectric resonator antenna arrays, 11th International Conference on Antennas and Propagation, Conference Publication IEEE, 668- 671 (2003).

DOI: 10.1049/cp:20010374

Google Scholar

[39] P. B. A. Fechine, M. J. S. da Rocha, M. R. P. Santos, F. M. M. Pereira, A. S. de Menezes, J. M. A. Almeida, J. C. Góes, A. P. Ayala, A. S. B. Sombra, Microstructural and electrical properties of PbTiO3 screen-printed thick films, J. Mater. Sci. - Mater. Electron. 19 (2008). 973-980

DOI: 10.1007/s10854-007-9429-8

Google Scholar

[40] P. B. A. Fechine, A. F. L. Almeida, F. N. A. Freire, M. R. P. Santos, F. M. M. Pereira, R. Jimenez, J. Mendiola, A. S. B. Sombra, Dielectric Relaxation of BaTiO3(BTO)– CaCu3Ti4O12 (CCTO) composite screen-printed thick films at low temperatures,Mater. Chem. Phys.96 (2006) 402-408.

DOI: 10.1016/j.matchemphys.2005.07.030

Google Scholar

[41] A. F. L. Almeida, P. B. A. Fechine, J. C. Góes, M. A. Valente, M. A. R. Miranda, A. S. B. Sombra, Dielectric properties of BaTiO3(BTO)–CaCu3Ti4O12 (CCTO) composite screen- printed thick films for high dielectric constant devices in the medium frequency (MF) range, Mater. Sci. EngB, 111 (2004) 113-123.

DOI: 10.1016/j.mseb.2004.03.027

Google Scholar

[42] A. F. L. Almeida, P. B. A. Fechine, J. M. Sasaki, A. P. Ayala, J. C. Góes, D. L. Pontes, W. Margulis, A. S. B. Sombra, Optical and electrical properties of barium titanate-hydroxyapatite, Solid State Sci. 6 (2004) 267-278.

DOI: 10.1016/j.solidstatesciences.2003.12.010

Google Scholar

[43] P. B. A. Fechine, A. Távora, L. C. Kretly, A. F. L. Almeida, M. R. P. Santos, F. N. A. Freire, A. S. B. Sombra, Microstrip antenna on a high dielectric constant substrate: BaTiO3(BTO)- CaCu3Ti4O12(CCTO)composite screen-printed thick films, IEEE JEMat. 35 (2006) 1848-1856.

DOI: 10.1007/s11664-006-0167-0

Google Scholar

[44] A. F. L. Almeida, P. B. A. Fechine, L. C. Kretly, A. S. B. Sombra, BaTiO3 (BTO)- CaCu3Ti4O12 (CCTO) Substrates for Microwave Devices and Antennas, J. Mater. Sci. 41 (2006) 4623-4631.

DOI: 10.1007/s10853-006-0052-5

Google Scholar

[45] K. D. A. Saboia, P. B. A. Fechine, M. R. P. Santos, F. N. A. Freire, F. M. M. Pereira, A. S. B. Sombra, Composite Screen-Printed Thick Films for High Dielectric Constant Devices: Bi4Ti3O12(BIT)-CaCu3Ti4O12(CCTO) Films, Polym. Compos. 28 (2007) 771-777.

DOI: 10.1002/pc.20347

Google Scholar

[46] J. K. Plourde, D. F. Linn, H. M. O'Bryan Jr., John Thomson Jr., Ba2Ti9O20 as a Microwave Dielectric Resonator, Am. Ceram. Soc.. 58 (1974) 418-420.

Google Scholar

[47] A. Goldman, Magnetic Ceramics (Ferrites). In: ASM International – The Materials Information Society. V. 4. Engineered Materials Handbook – Ceramics and Glasses, USA, 1991, p.1161.

Google Scholar

[48] P. B. A. Fechine, R. S. T. Moretzsohn, R. C. S. Costa, J. Derov, J. W. Stewart, A. J. Drehman, C. Junqueira, A. S. B. Sombra, Magneto-dielectric properties of the Y3Fe5O12 and Gd3Fe5O12 dielectric ferrite resonator antennas, Microw Opt Technol Lett. 50 (2008) 2852-2857.

DOI: 10.1002/mop.23824

Google Scholar

[49] E. A. Nenasheva, N. F. Kartenko, High dielectric constant microwave ceramic, J. Eur. Ceram. Soc. 21 (2001) 2697-2701.

DOI: 10.1016/s0955-2219(01)00348-x

Google Scholar

[50] Y. Kobayashi, M. Katoh, Microwave Measurement of Dielectric Properties of Low-loss Materials by the Di-electric Rod Resonator Method, IEEE Trans. Microw. Theory Tech. 33 (1985) 586-592.

DOI: 10.1109/tmtt.1985.1133033

Google Scholar

[51] R. Grabovickic, Accurate calculations of geometrical factors of Hakki-Coleman shielded dielectric resonators, IEEE Trans. Appl. Supercond. 9 (1999) 4607-4612.

DOI: 10.1109/77.791916

Google Scholar

[52] P.B.A. Fechine, H.H.B. Rocha, R.S.T. Moretzsohn, J.C. Denardin, R. Lavín, A.S.B. Sombra, Study of a microwave ferrite resonator antenna, based on a ferrimagnetic composite (Gd3Fe5O12)GdIGX(Y3Fe5O12)YIG1?X, IEEE T. Antenn. Propag. 3 (2009) 1191-1198.

DOI: 10.1049/iet-map.2008.0301

Google Scholar

[53] P. J. Castro, M. C. A. Nono. Microwave Properties of Barium Nanotitanate Dielectric Resonators, JMO. 1 (1999) 12-19.

Google Scholar

[54] S. A. Long, M. W. Mcallister. L. C. Shen, The resonant cylindrical dielectric cavity antenna, IEEE T. Antenn. Propag. 31 (1983) 406-412.

DOI: 10.1109/tap.1983.1143080

Google Scholar

[55] D. Kajfez, P. Guillon, Dielectric Resonators - The Artech House Microwave Library, Artech House, UK, 1986.

Google Scholar

[56] G. P. Junker, A. A. Kishk, A. W. Glisson, and D. Kajfez, Effect of air gap on cylindrical dielectric resonator antenna operating in TM01 mode, Electron. Lett. 30 (1994) 97-98.

DOI: 10.1049/el:19940114

Google Scholar

[57] G. P. Junker, A. A. Kishk, A. W. Glisson, and D. Kajfez, Effect of an air gap around the coaxial probe exciting a cylindrical dielectric resonator antenna, Electron. Lett. 30 (1994) 177-178.

DOI: 10.1049/el:19940191

Google Scholar

[58] R. D. Sánchez, J. Rivas, P. Vaqueiro, M. A. Lopez-Quintela, D. Caeiro. Particle size effects on magnetic properties of yttrium iron garnets prepared by a sol-gel method, J. Magn. Magn. Mater. 247 (2002) 92–98.

DOI: 10.1016/s0304-8853(02)00170-1

Google Scholar

[59] A. F. L. Almeida, R. R. Silva, H. H. B. Rocha, P. B. A. Fechine, F. S. A. Cavalcanti, M. A. Valente, F. N. A. Freire, R. S. T. M. Sohn, A. S. B. Sombra, Experimental and Numerical Investigation of a Ceramic Dielectric Resonator (DRA): CaCu3Ti4O12 (CCTO), Physica B: Condens. Matter. 403 (2008) 586-594.

DOI: 10.1016/j.physb.2007.08.222

Google Scholar

[60] C. A. Balanis, Antenna Theory: Analysis and Design, second edition, John Wiley & Sons, Inc., New York, 1997.

Google Scholar

[61] S. D. Figueiro, E. J. J. Mallmann, J. C. Góes, N. M. P. S. Ricardo, J. C. Denardin, A. S. B.Sombra, P. B. A. Fechine, New ferrimagnetic biocomposite film based in collagen and yttrium iron garnet, Express Polym. Lett. 4 (2010) 790-797.

DOI: 10.3144/expresspolymlett.2010.95

Google Scholar

[62] C. C. Silva, A. G. Pinheiro, S. D. Figueiró, J. C. Góes, J. M. Sasaki, M. A. R. Miranda, A. S. B. Sombra, Piezoelectric properties of collagen-nanocrystalline hydroxyapatite composites, J. Mater. Sci.37 (2002) 2061-2070.

DOI: 10.1023/a:1015219800490

Google Scholar

[63] P. B. A. Fechine, F. M. M. Pereira, M. R. P. Santos, F. P. Filho, A. S. de Menezes, R. S. De Oliveira, J. C. Góes, L. P. Cardoso, A. S. B. Sombra, Microstructure and magneto-dielectric properties of ferrimagnetic composite GdIGX:YIG1-X at radio and microwave frequencies, J. Phys. Chem. Solids. 70 (2009) 804-810.

DOI: 10.1016/j.jpcs.2009.03.009

Google Scholar

[64] E. J. J. Mallmann, J. C. Góes, S. D. Figueiró, N. M. P. S. Ricardo, J. C. Denardin, A. S. B. Sombra, F. J. N. Maia, S. E. Mazzeto, P. B. A. Fechine, Microstructure and magneto-dielectric properties of the chitosan/gelatin-YIG biocomposites, Express Polym. Lett. 5 (2011) 1041-1049.

DOI: 10.3144/expresspolymlett.2011.102

Google Scholar

[65] Ni Ni, Kongshuang Zhao, Dielectric analysis of chitosan gel beads suspensions: Influence of low crosslinking agent concentration on the dielectric behavior, J. Colloid Interface Sci. 312 (2007) 256-264.

DOI: 10.1016/j.jcis.2007.03.073

Google Scholar

[66] G. Maier, Low dielectric constant polymers for microelectronics, Prog. Polym. Sci. 26 (2001) 3-65.

Google Scholar

[67] R. Popielarz, C.K. Chiang, Polymer composites with the dielectric constant comparable to that of barium titanate ceramics, MSE B. 139 (2007) 48-54.

DOI: 10.1016/j.mseb.2007.01.035

Google Scholar

[68] Y. Kobayashi, T. Tanase, T. Tabata, T. Miwa, M. Konno, Fabrication and dielectric properties of the BaTiO3-polymer nano-composite thin films, J Eur Ceram Soc. 28 (2008) 117-122.

DOI: 10.1016/j.jeurceramsoc.2007.05.007

Google Scholar

[69] E. Marzec, K. Pietrucha, The effect of different methods of cross-linking of collagen on its dielectric properties, Biophys. Chem. 132 (2008) 89-96.

DOI: 10.1016/j.bpc.2007.10.012

Google Scholar

[70] S.D. Figueiró, J. C. Góes, R.A. Moreira, A.S.B. Sombra, On the physico-chemical and dielectric properties of glutaraldehyde crosslinked galactomannan-collagen films Carbohydr. Polym,. 56 (2004) 313-320.

DOI: 10.1016/j.carbpol.2004.01.011

Google Scholar

[71] M. Rajendran, S. Deka, P. A. Joy, A. K. Bhattacharya, Size-dependent magnetic properties of nanocrystalline yttrium iron garnet powders, J. Magn. Magn. Mater. 301 (2006) 212-219.

DOI: 10.1016/j.jmmm.2005.06.027

Google Scholar