Heat Transfer in Composites Subjected to Temperature Variations

Article Preview

Abstract:

The heat transfer problem in the 2-phase composite material containing metallic and elastic phases, subjected to quick temperature variations, is the aim of theoretical analysis. The full description of the composite behaviour starts from the formulation of governing equations at 2-scale levels: micro-and macro-, passes through specification of the internal structure of the composite and finishes by numerical solution of the heat transfer problem through the considered material sample. The most important in the analysis are thermo-mechanical properties of the composite components creating the material. The big difference of the both phases properties (mismatch) can create additional difficulty in the exact thermal description of the composite. It is necessary also to specify by scanning electron microscopy (SEM) observations a real material internal structure, which includes: grain shapes and matrix, to create of the proper size of the Representative Volume Element (RVE) for numerical calculations.In the numerical example we analyse cermet, i.e. the composite build up of metallic matrix (cobalt) and tungsten carbide elastic grains, which exhibits high brittleness. Heat transfer across this very complex material causes heat flux concentrations in the metallic phase and further stress concentrations. These concentrations act as sources of damage initiators at the binder/carbide grains interfaces. The obtained results lead to the conclusion that the spatial distribution and content of the metallic phase first of all influence the heat transfer across the 2-phase composites.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 216)

Pages:

140-145

Citation:

Online since:

August 2014

Export:

Price:

* - Corresponding Author

[1] T. Sadowski, Gradual degradation of two-phase ceramic composites under compression, Comput. Mat. Sci. 64 (2012) 209-211.

DOI: 10.1016/j.commatsci.2012.01.034

Google Scholar

[2] T. Sadowski, L. Marsavina, Multiscale modelling of two-phase ceramic matrix composites Comput. Mat. Sci. 50 (2011) 1336-1346.

DOI: 10.1016/j.commatsci.2010.04.011

Google Scholar

[3] T. Sadowski, S. Samborski, Development of damage state in porous ceramics under compression. Comput. Mat. Sci. 43 (2008) 75-81.

DOI: 10.1016/j.commatsci.2007.07.041

Google Scholar

[4] T. Sadowski, T. Nowicki, Numerical investigation of local mechanical properties of WC/Co composite. Comput. Mat. Sci. 43 (2008) 235-241.

DOI: 10.1016/j.commatsci.2007.07.030

Google Scholar

[5] T. Sadowski, S. Hardy, E. Postek, A new model for the time-dependent behaviour of polycrystalline ceramic materials with metallic inter-granular layers under tension. Mat. Sci. Eng. A 424 (2006) 230-238.

DOI: 10.1016/j.msea.2006.03.004

Google Scholar

[6] T. Sadowski, S. Hardy, E. Postek, Prediction of the mechanical response of polycrystalline ceramics containing metallic inter-granular layers under uniaxial tension. Comput. Mat. Sci. 34 (2005) 46-63.

DOI: 10.1016/j.commatsci.2004.10.005

Google Scholar

[7] E. Postek, T. Sadowski, Assessing the Influence of Porosity in the Deformation of Metal-Ceramic Composites, Comp. Interfaces 18 (2011) 57-76.

DOI: 10.1163/092764410x554049

Google Scholar

[8] T. Sadowski, E. Postek, C. Denis, Stress distribution due to discontinuities in polycrystalline ceramics containing metallic inter-granular layers. Comput. Mat. Sci. 39 (2007) 230-236.

DOI: 10.1016/j.commatsci.2006.03.022

Google Scholar

[9] T. Sadowski, K. Nakonieczny, Thermal shock response of FGM cylindrical plates with various grading patterns. Comput. Mat. Sci. 43 (2008) 171-178.

DOI: 10.1016/j.commatsci.2007.07.051

Google Scholar

[10] K. Nakonieczny, T. Sadowski, Modelling of thermal shock in composite material using a meshfree FEM. Comp. Mater. Sci. 44 (2009) 1307-1311.

DOI: 10.1016/j.commatsci.2008.08.019

Google Scholar

[11] T. Sadowski, A. Neubrand, Estimation of the crack length after thermal shock in FGM strip. Int. J. Fract. 127 (2004) 135-140.

DOI: 10.1023/b:frac.0000035087.34082.88

Google Scholar

[12] T. Sadowski, S. Ataya, K. Nakonieczny, Thermal analysis of layered FGM cylindrical plates subjected to sudden cooling process at one side – comparison of two applied methods for problem solution. Comp. Mater. Sci. 45 (2009) 624-632.

DOI: 10.1016/j.commatsci.2008.07.011

Google Scholar

[13] M. Birsan, H. Altenbach., T. Sadowski, V. Eremeyev, D. Pietras, Deformation analysis of functionally graded beams by the direct approach. Comp. Part B 43 (2012) 1315-1328.

DOI: 10.1016/j.compositesb.2011.09.003

Google Scholar

[14] V. Burlayenko, T. Sadowski, Effective elastic properties of foam-filled honeycomb cores of sandwich panels. Comp. Struct. 92 (2010) 2890-2900.

DOI: 10.1016/j.compstruct.2010.04.015

Google Scholar

[15] T. Sadowski, P. Golewski, Multidisciplinary analysis of the operational temperature increase of turbine blades in combustion engines by application of the ceramic thermal barrier coatings (TBC), Comput. Mat. Sci. 50 (2011) 1326-1335.

DOI: 10.1016/j.commatsci.2010.05.032

Google Scholar

[16] T. Sadowski, P. Golewski, The influence of quantity and distribution of cooling channels of turbine elements on level of stresses in the protective layer TBC and the efficiency of cooling, Comput. Mat. Sci. 52 (2012) 293-297.

DOI: 10.1016/j.commatsci.2011.02.027

Google Scholar

[17] T. Sadowski, P. Golewski, Detection and numerical analysis of the most efforted places in turbine blades under real working conditions, Comput. Mat. Sci. 64 (2012) 285 – 288.

DOI: 10.1016/j.commatsci.2012.02.048

Google Scholar

[18] T. Sadowski, L. Marsavina, N. Peride, E. -M. Craciun, Cracks propagation and interaction in an orthotropic elastic material: Analytical and numerical methods. Comput. Mat. Sci. 46(2009) 687-693.

DOI: 10.1016/j.commatsci.2009.06.006

Google Scholar

[19] V. Petrova, T. Sadowski, Theoretical analysis of Mode II cracks in a compact shear specimen. Comput. Mat. Sci. 64 (2012), 248-252.

DOI: 10.1016/j.commatsci.2012.01.035

Google Scholar

[20] L. Marsavina, T. Sadowski, Kinked crack at bi-material ceramic interface – numerical determination of fracture parameters, Comput. Mat. Sci. 44 (2009) 941-950.

DOI: 10.1016/j.commatsci.2008.07.005

Google Scholar

[21] L. Marsavina, T. Sadowski, Fracture parameters at bi-material ceramic interfaces under bi-axial state of stress. Comput. Mat. Sci. 45 (2009) 693-697.

DOI: 10.1016/j.commatsci.2008.06.005

Google Scholar

[22] L. Marsavina, T. Sadowski, Stress intensity factors for an interface kinked crack in a bi-material plate loaded normal to the interface. Int. J. Frac. 145 (2007) 237-243.

DOI: 10.1007/s10704-007-9124-z

Google Scholar

[23] T. Sadowski, M. Knec, P. Golewski, Experimental investigations and numerical modelling of steel strip adhesive joint reinforced by rivets, Int. J. Adhesion & Adhesives 30(2010) 338-346.

DOI: 10.1016/j.ijadhadh.2009.11.004

Google Scholar

[24] V. Burlayenko, T. Sadowski, Analysis of structural performance of aluminium sandwich plates with foam-filled hexagonal foam. Comp. Mater. Sci. 45(2009) 658-662.

DOI: 10.1016/j.commatsci.2008.08.018

Google Scholar

[25] T. Sadowski, P. Golewski, E. Zarzeka-Raczkowska, Damage and failure processes of hybrid joints: adhesive bonded aluminium plates reinforced by rivets, Comp. Mat. Sci. 50 (2011) 1256-1262.

DOI: 10.1016/j.commatsci.2010.06.022

Google Scholar

[26] T. Balawender, T. Sadowski, P. Golewski, Experimental and numerical analysis of hybrid clinched – adhesive joints, J. Adhesive Sci. and Technology 25 (2011) 2391-2407.

Google Scholar

[27] G. L. Golewski, T. Sadowski, P. Golewski, Numerical modeling crack propagation under Mode II fracture in plain concretes containing siliceous fly-ash additive using XFEM method, Comput. Mat. Sci. 62 (2012) 75-78.

DOI: 10.1016/j.commatsci.2012.05.009

Google Scholar

[28] G. L. Golewski, T. Sadowski, Experimental investigation and numerical modeling fracture processes under Mode II in concrete composites containing fly-ash additive at early age, Solid State Phenomena 188 (2012) 158-163.

DOI: 10.4028/www.scientific.net/ssp.188.158

Google Scholar

[29] I. Ivanov, T. Sadowski, D. Pietras, Crack propagation in functionally graded strip under thermal shock. Eur. Phys. J. Special Topics 222 (2013) 1587-1595.

DOI: 10.1140/epjst/e2013-01947-3

Google Scholar

[30] H. Debski, T. Sadowski, Modelling of microcracks initiation and evolution along interfaces of the WC/Co composite by the finite element method, Comput. Mater. Sci. (2014), http: /dx. doi. org/10. 1016/j. commatsci. 2013. 11. 045.

DOI: 10.1016/j.commatsci.2013.11.045

Google Scholar