Radiation Induced Effects on Properties of Semiconducting Nanomaterials

Article Preview

Abstract:

The irradiation of nanomaterials with energetic particles has significant effects on the properties of target materials. In addition to the well-known detrimental effects of irradiations, they have also some beneficial effects on the properties of nanomaterials. Irradiation effect can change the morphology of the materials in a controlled manner and tailor their mechanical, structural, optical and electrical properties. Irradiation induced modifications in the properties of nanomaterials can be exploited for many useful applications. With the aim of getting better performance of electronic devices, it is necessary to discuss the irradiation induced changes in the nanomaterials. In order to improve the irradiation hardness of electronic components, it is also crucial to have a fundamental understanding of the impact of the irradiation on the defect states and transport properties of the host material. In the present article, we review some recent advances on the irradiation induced effects on the properties of semiconducting nanomaterials. We have reviewed the effect of different types of irradiations which includes γ-irradiation, electron beam irradiation, laser irradiation, swift heavy ion irradiations, thermal induced, and optical induced irradiations, etc. on the various properties of semiconducting nanomaterials. In addition, the irradiation induced defects are also discussed.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 239)

Pages:

1-36

Citation:

Online since:

August 2015

Export:

Price:

[1] C.C. Yang, Y.W. Mai, Thermodynamics at the nanoscale: A new approach to the investigation of unique physicochemical properties of nanomaterials, Mat. Sci. Eng. R 79 (2014) 1-40.

Google Scholar

[2] X. Qu, P.J.J. Alvarez, Q. Li, Applications of nanotechnology in water and wastewater treatment, Water Res. 47 (2013) 3931-3946.

DOI: 10.1016/j.watres.2012.09.058

Google Scholar

[3] S.J. Lim, A. Smith, S. Nie, The more exotic shapes of semiconductor nanocrystals: emerging applications in bioimaging, Curr. Opin. Chem. Eng. 4 (2014) 137-143.

DOI: 10.1016/j.coche.2014.01.013

Google Scholar

[4] J.S. Lee, J. Jang, Hetero-structured semiconductor nanomaterials for photocatalytic applications, J. Ind. Eng. Chem. 20 (2014) 363-371.

Google Scholar

[5] S.S. Kanmani, K. Ramachandran, Synthesis and characterization of TiO2/ZnO core/shell nanomaterials for solar cell applications, Renew. Energ. 43 (2012) 149-156.

DOI: 10.1016/j.renene.2011.12.014

Google Scholar

[6] J. Li, J.Z. Zhang, Optical properties and applications of hybrid semiconductor nanomaterials, Coordin. Chem. Rev. 253 (2009) 3015-3041.

Google Scholar

[7] Kenry, C.T. Lim, Synthesis, optical properties, and chemical–biological sensing applications of one-dimensional inorganic semiconductor nanowires, Prog. Mater. Sci. 58 (2013) 705-748.

DOI: 10.1016/j.pmatsci.2013.01.001

Google Scholar

[8] J. Jie, W. Zhang, I. Bello, C.S. Lee, S.T. Lee, One-dimensional II-VI nanostructures: Synthesis, properties and optoelectronic applications, Nano Today 5 (2010) 313-336.

DOI: 10.1016/j.nantod.2010.06.009

Google Scholar

[9] W.Q. Li, X.H. Xiao, A.L. Stepanov, Z.G. Dai, W. Wu, G.X. Cai, F. Ren, C.Z. Jiang, The ion implantation-induced properties of one-dimensional nanomaterials, Nanoscale Res. Lett. 8 (2013) 175 (1-13).

DOI: 10.1186/1556-276x-8-175

Google Scholar

[10] R.A. Andrievski, Behavior of radiation defects in nanomaterials, Rev. Adv. Mater. Sci. 29 (2011) 54-67.

Google Scholar

[11] A.P. Singh, S. Kumari, R. Shrivastav, S. Dass, V.R. Satsangi, Improved photoelectrochemical response of haematite by high energy Ag9+ ions irradiation, J. Phys. D: Appl. Phys. 42 (2009) 085303-085307.

DOI: 10.1088/0022-3727/42/8/085303

Google Scholar

[12] M. Gupta, J. Shrivastava, V. Sharma, A. Solanki, A.P. Singh, V.R. Satsangi, S. Dass, R. Shrivastav, Enhanced photoelectrochemical activity of 120 MeV Ag9+ irradiated nanostructured thin films of ZnO for solar-hydrogen generation via splitting of water, Adv. Mat. Res. 67 (2009).

DOI: 10.4028/www.scientific.net/amr.67.95

Google Scholar

[13] P. Kumar, P. Sharma, A. Solanki, A. Tripathi, D. Deva, R. Shrivastav, S. Dass, V.R. Satsangi, Photoelectrochemical generation of hydrogen using 100 Mev Si8+ ion irradiated electrodeposited iron oxide thin films, Int. J. Hydrogen Energ. 37 (2012).

DOI: 10.1016/j.ijhydene.2011.05.041

Google Scholar

[14] A. Solanki, J. Shrivastava, S. Upadhyay, V. Sharma, P. Sharma, P. Kumar, P. Kumar, K. Gaskell, V.R. Satsangi, R. Shrivastav, S. Dass, Irradiation-induced modifications and PEC response-A case study of SrTiO3 thin films irradiated by 120 MeV Ag9+ ions, Int. J. Hydrogen Energ. 36 (2011).

DOI: 10.1016/j.ijhydene.2011.01.149

Google Scholar

[15] A.V. Krasheninnikov, K. Nordlund, Ion and electron irradiation-induced effects in nanostructured materials, J. Appl. Phys. 107 (2010) 071301(1-70).

DOI: 10.1063/1.3318261

Google Scholar

[16] A. Hashimoto, K. Suenaga, A. Gloter, K. Urita, S. Iijima, Direct evidence for atomic defects in graphene layer, Nature 430 (2004) 870-873.

DOI: 10.1038/nature02817

Google Scholar

[17] B. Peng, M. Locascio, P. Zapol, S. Li, S. L. Mielke, G. C. Schatz, H.D. Espinosa, Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements, Nat. Nanotechnol. 3 (2008) 626-631.

DOI: 10.1038/nnano.2008.211

Google Scholar

[18] C. Gómez-Navarro, P.J. De Pablo, J. Gómez-Herrero, B. Biel, F.J. Garcia-Vidal, A. Rubio, F. Flores, Tuning the conductance of single-walled carbon nanotubes by ion irradiation in the Anderson localization regime, Nature Mater. 4 (2005) 534-539.

DOI: 10.1038/nmat1414

Google Scholar

[19] S.K. Tripathi, Irradiation induced changes in semiconducting thin films, Defect & Diff. Forum 341 (2013) 181-210.

DOI: 10.4028/www.scientific.net/ddf.341.181

Google Scholar

[20] L.S. Novikov, E.N. Voronina, N.P. Chirskaya, Features of radiation impact on nanostructured materials, Inorg. Mater: Appl. Res. 5 (2014) 107-115.

DOI: 10.1134/s2075113314020130

Google Scholar

[21] J.T. Kim, J. S. Chang, Generation of metal oxide aerosol particles by a pulsed spark discharge technique, J. Electrostatics 63, 911–916 (2005).

DOI: 10.1016/j.elstat.2005.03.066

Google Scholar

[22] N.K. Chaudhury, R. Gupta, S. Gulia, Sol-gel technology for sensor applications, Defence Sci. J., 57 (2007) 241-253.

DOI: 10.14429/dsj.57.1765

Google Scholar

[23] M. Sharma, S.K. Tripathi, Photoluminescence study of CdSe nanorods embedded in a PVA matrix, J. Lumin. 135 (2013) 327-334.

DOI: 10.1016/j.jlumin.2012.09.016

Google Scholar

[24] N. Kumar, V.K. Komarala, V. Dutta, In-situ synthesis of Au–CdS plasmonic photocatalyst by continuous spray pyrolysis and its visible light photocatalysis, Chem. Eng. J. 236 (2014) 66-74.

DOI: 10.1016/j.cej.2013.09.052

Google Scholar

[25] R. Polia, L.E.N. Alland, M.P. Shaverd, Iron-mediated reversible deactivation controlled radical polymerization, Prog. Polym. Sci. 39 (2014) 1827-1845.

Google Scholar

[26] M. Wang, Q. Zeng, B. Zhao, C. Chen, G. Liu, H. Dannong, Controlled synthesis of anatase/tungstite heterogeneous nanomaterials induced by oxalic acid, Catal. Commun. 48 (2014) 60-64.

DOI: 10.1016/j.catcom.2014.01.011

Google Scholar

[27] G.H. Yang, A. Abulizi, J.J. Zhu, Sonochemical fabrication of gold nanoparticles–boron nitride sheets nanocomposites for enzymeless hydrogen peroxide detection, Ultrason. Sonochem. 21 (2014) 1958-(1963).

DOI: 10.1016/j.ultsonch.2014.01.020

Google Scholar

[28] J. Chen, M. Wang, X. Liao, Z. Liu, J. Zhang, L. Ding, L. Gao, Y. Li, Large-scale synthesis of single-crystal molybdenum trioxide nanobelts by hot-wire chemical vapour deposition, J. Alloy. Compd. 619 (2015) 406-410.

DOI: 10.1016/j.jallcom.2014.09.069

Google Scholar

[29] S.K. Tripathi, Temperature dependent barrier height in CdSe Schottky diode, J. Mat. Sci. 45 (2010) 5465-5471.

DOI: 10.1007/s10853-010-4601-6

Google Scholar

[30] Z.J. Wang, H. Kokawa, H. Takizawa, M. Ichiki, R. Maeda, Low-temperature growth of high-quality lead zirconate titanate thin films by 28 GHz microwave irradiation, Appl. Phys. Lett. 86 (2005) 212903 (1-3).

DOI: 10.1063/1.1935748

Google Scholar

[31] P.D. Edmondson, Y. Zhang, S. Moll , F. Namavar, W.J. Weber, Irradiation effects on microstructure change in nanocrystalline ceria-Phase, lattice stress, grain size and boundaries, Acta Mater. 60 (2012) 5408-5416.

DOI: 10.1016/j.actamat.2012.07.010

Google Scholar

[32] S. Dhara, A. Datta, C. Wu, Z. Lan, K. Chen, Y. Wang, L. Chen, C. Hsu, H. Lin, C. Chen, Enhanced dynamic annealing in Ga ion-implanted GaN nanowires, Appl. Phys. Lett. 82 (2003) 451-453.

DOI: 10.1063/1.1536250

Google Scholar

[33] J.I. Juaristi, C. Auth, H. Winter, A. Arnau, K. Eder, D. Semrad, F. Aumayr, P. Bauer, and P. Echenique, Unexpected behavior of the stopping of slow ions in ionic crystals, Phys. Rev. Lett. 84 (2000) 2124-2127.

DOI: 10.1103/physrevlett.84.2124

Google Scholar

[34] V.U. Nazarov, J.M. Pitarke, C.S. Kim, Y. Takada, Time-dependent density-functional theory for the stopping power of an interacting electron gas for slow ions, Phys. Rev. B 71 (2005) 121106 (1-4).

DOI: 10.1103/physrevb.71.121106

Google Scholar

[35] G. Compagnini, F. Giannazzo, S. Sonde, V. Raineri, E. Rimini, Ion irradiation and defect formation in single layer grapheme, Carbon 47 (2009) 3201-3207.

DOI: 10.1016/j.carbon.2009.07.033

Google Scholar

[36] S. Tavernier, Experimental Techniques in Nuclear and Particle Physics (Springer Berlin Heidelberg), Interactions of Particles in Matter, (2010) pp.23-53.

Google Scholar

[37] E.M. Bringa, R.E. Johnson, Coulomb Explosion and Thermal Spikes, Phys. Rev. Lett. 88 (2002) 165501(1-4).

DOI: 10.1103/physrevlett.88.165501

Google Scholar

[38] D. Leuser, A. Dunlop, Damage creation via electronic excitations in metallic targets part II: A theoretical model, Radiat. Eff. Defect Solids 126 (1993) 163-172.

DOI: 10.1080/10420159308219701

Google Scholar

[39] G. Szenes, Coulomb explosion at low and high ion velocities, Nucl. Instrum. Meth. B 298 (2013) 76-80.

Google Scholar

[40] D. Kaoumi, A.T. Motta, R.C. Birtcher, A thermal spike model of grain growth under irradiation, J. Appl. Phys. 104 (2008) 073525 (1-13).

DOI: 10.1063/1.2988142

Google Scholar

[41] G.A.M. Amin, γ-Irradiation effects on the optical properties of amorphous Ge10As30Se60 thin films, Nucl. Instrum. Meth. B 267 (2009) 3333-3336.

Google Scholar

[42] N.A.N. Azmy, H. Abdullah, N.M. Naim, A.A. Hamid, S. Shaari, W.H.M. Wan Mokhtar, Gamma irradiation effect on the structural, morphology and electrical properties of ZnO–CuO doped PVA nanocomposite thin films for Escherichiacoli sensor, Radiat. Phys. Chem. 103 (2014).

DOI: 10.1016/j.radphyschem.2014.05.025

Google Scholar

[43] M. El-Hagary, M. Emam-Ismail, E.R. Shaaban, A. El-Taher, Effect of γ-irradiation exposure on optical properties of chalcogenide glasses Se70S30-xSbx thin films, Radiat. Phys. Chem. 81 (2012) 1572-1577.

DOI: 10.1016/j.radphyschem.2012.05.012

Google Scholar

[44] G.A. Amin, S.M. El-Sayed, H.M. Saad, F.M. Hafez, M. Abd-El-Rahman, The radiation effect on optical and morphological properties of Ag–As–Te thin films. Radiat. Meas. 42 (2007) 400-406.

DOI: 10.1016/j.radmeas.2006.12.006

Google Scholar

[45] M.R. Balboul, H.M. Hosni, S.A. Fayek, Effect of Co60 γ- irradiation on the optical properties of thin films from the system GeSe3–Sb2Se3–ZnSe, Radiat. Phys. Chem. 81 (2012) 1848-1855.

DOI: 10.1016/j.radphyschem.2012.08.007

Google Scholar

[46] O.I. Shpotyuk, Amorphous chalcogenide semiconductors for dosimetry of high-energy ionizing radiation. Radiat. Phys. Chem. 46 (1995) 1279-1282.

DOI: 10.1016/0969-806x(95)00369-9

Google Scholar

[47] O.I. Shpotyuk, V.O. Balitska, Coordination defects in vitreous As2S3 induced by γ-irradiation. Acta Phys. Pol. A 92 (1997) 577-583.

DOI: 10.12693/aphyspola.92.577

Google Scholar

[48] O.I. Shpotyuka, R. Ya. Golovchaka, H. Jaind, A. Kozdras, Radiation-induced physical ageing of the structure of an arsenic-selenide glass. J. Phys. Chem. Solids 68 (2007) 901-905.

DOI: 10.1016/j.jpcs.2006.12.002

Google Scholar

[49] O.D. Bekasova, A.A. Revina, A.L. Rusanov, E.S. Kornienko, B.I. Kurganov, Effect of gamma-ray irradiation on the size and properties of CdS quantum dots in reverse micelles, Radiat. Phys. Chem. 92 (2013) 87-92.

DOI: 10.1016/j.radphyschem.2013.06.025

Google Scholar

[50] T.K. Srinivasan, B.S. Panigrahi, A.K. Arora, B. Venkatraman, D. Ponraju, Gamma irradiation effect on photoluminescence from functionalized LaF3: Ce nanoparticles, Radiat. Phys. Chem. 99 (2014) 92-96.

DOI: 10.1016/j.radphyschem.2014.02.012

Google Scholar

[51] A. Kaur, R.P. Chauhan, Effect of gamma irradiation on electrical and structural properties of Zn nanowires, Radiat. Phys. Chem. 100 (2014) 59-64.

DOI: 10.1016/j.radphyschem.2014.03.027

Google Scholar

[52] M. Mohapatra, M. Kumar, V. Natarajan, S.V. Godbole, Gamma irradiation effects on the luminescence properties of SrBPO5: Sm, Radiat. Phys. Chem. 103 (2014) 31-36.

DOI: 10.1016/j.radphyschem.2014.05.041

Google Scholar

[53] A.M. Al-Baradi, M.M. El-Nahass, M.M.A. El-Raheem, A.A. Atta, A.M. Hassanien, Effect of gamma irradiation on structural and optical properties of Cd2SnO4 thin films deposited by DC sputtering technique, Radiat. Phys. Chem. 103 (2014) 227-233.

DOI: 10.1016/j.radphyschem.2014.05.055

Google Scholar

[54] I. Nasieka, L. Rashkovetskyi, M. Boyko, V. Strelchuk, Z. Tsybrii, B. Danilchenko, L. Shcherbak, Low-temperature photoluminescence analysis of the γ-irradiation effect on the defect structure in Ge-doped CdTe single crystals, J. Lumin. 144 (2013).

DOI: 10.1016/j.jlumin.2013.06.046

Google Scholar

[55] A.M. Baradi, M.M. Nahass, M.M. Raheem, A.A. Atta, A.M. Hassanien, Effect of gamma irradiation on structural and optical properties of Cd2SnO4 thin films deposited by DC sputtering technique, Radiat. Phys. Chem. 103 (2014) 227–233.

DOI: 10.1016/j.radphyschem.2014.05.055

Google Scholar

[56] M. Mohil, G. Anil Kumar, Gamma radiation induced effects in TeO2 thin films, J. Nano- Electronic Phy. 2 (2013) 02018 (3-6).

Google Scholar

[57] I. Nasiek, L. Rashkovetskyi, M. Boyko, V. Strelchuk, Z. Tsybrii, B. Danilchenko, L. Shcherbak, Low-temperature photoluminescence analysis of the γ-irradiation effect on the defect structure in Ge-doped CdTe single crystals, J. Lumin. 144 (2013).

DOI: 10.1016/j.jlumin.2013.06.046

Google Scholar

[58] F.H. El-Batal, A.M. Abdelghany, R.L. Elwan, Structural characterization of gamma irradiated lithium phosphate glasses containing variable amounts of molybdenum, J. Mol. Struct. 1000 (2011) 103-108.

DOI: 10.1016/j.molstruc.2011.05.060

Google Scholar

[59] F.H. ElBatal, S. Ibrahim, A.M. Abdelghany, Optical and FTIR spectra of NdF3-doped borophosphate glasses and effect of gamma irradiation, J. Mol. Struct. 1030 (2012) 107–112.

DOI: 10.1016/j.molstruc.2012.02.049

Google Scholar

[60] M.A. Marzouk, S. Ibrahim, Y.M. Hamdy, Luminescence efficiency growth in wide band gap semiconducting Bi2O3 doped Cd0. 4Pb0. 1B0. 5 glasses and effect of c-irradiation, J. Mol. Struct. 1076 (2014) 576–582.

DOI: 10.1016/j.molstruc.2014.08.022

Google Scholar

[61] M.M. El-Nahass, A.A.A. Darwish, E.F.M. El-Zaidia, A.E. Bekheet, Gamma irradiation effect on the structural and optical properties of nanostructured InSe thin films, J. Non-Cryst. Solids. 382 (2013) 74-78.

DOI: 10.1016/j.jnoncrysol.2013.10.012

Google Scholar

[62] I. Nasieka, M. Boyko, V. Strelchuk, B. Danilchenko, L. Rashkovetskyi, P. Fochuk, Gamma-irradiation effect on electron–phonon coupling in Ge-doped CdTe crystals: Raman and photoluminescence study, Solid State Commun. 196 (2014) 46-50.

DOI: 10.1016/j.ssc.2014.07.018

Google Scholar

[63] S.A. Yang, B.H. Kim, M.K. Lee, G. J. Lee, N.H. Lee, B. D. Sang, Gamma-ray irradiation effects on electrical properties of ferroelectric PbTiO3 and Pb(Zr0. 52Ti0. 48)O3 thin films, Thin Solid Films 562 (2014) 185-189.

DOI: 10.1016/j.tsf.2014.04.038

Google Scholar

[64] P. Rana, R.P. Chauhan, Size and irradiation effects on the structural and electrical properties of copper nanowires, Physica B 45 (2014) 126-133.

Google Scholar

[65] Y.M. Azhniuk, A.V. Gomonnai, V.V. Lopushansky, I.G. Megela, M.V. Prymak, M.A. Skoryk, I.B. Yanchuk, D.R.T. Zahn, Optical absorption of II–VI semiconductor-doped glasses exposed to 7 MeV electron irradiation, Opt. Mater. 35 (2013) 2275-2282.

DOI: 10.1016/j.optmat.2013.06.017

Google Scholar

[66] A.M. Abdelghany, M.A. Ouis, M.A. Azooz, H.A. Ellbatal, Defect formation of gamma irradiated MoO3-doped borophosphate glasses, Spectrochimica Acta Part A: Mol. Biomol. Spect. 114 (2013) 569-574.

DOI: 10.1016/j.saa.2013.05.023

Google Scholar

[67] M.P.B. Lamo, P. Williams, P. Reece, G.R. Lumpkin, L.R. Sheppard, Study of gamma irradiation effect on commercial TiO2 photocatalyst, Appl. Radiat. Isotopes 89 (2014) 25-29.

DOI: 10.1016/j.apradiso.2014.02.001

Google Scholar

[68] M.S.A. Sofiany, H.E. Hassan, A.H. Ashour, M.M. Raheem, Study of gamma-rays enhanced changes of the ZnO: Al thin film structure and optical properties radiation, Int. J. Electrochem. Sci. 9 (2014) 3209 -3221.

DOI: 10.1016/s1452-3981(23)08004-5

Google Scholar

[69] M.S. Ailavajhala, Y.G. Velo, C. Poweleit, H. Barnaby, M.N. Kozicki, K. Holbert, D.P. Butt, M. Mitkova, Gamma radiation induced effects in floppy and rigid Ge-containing chalcogenide thin films, J. Appl. Phys. 115 (2014) 502-507.

DOI: 10.1063/1.4862561

Google Scholar

[70] S.S. Dhasade, S. Patil, M.C. Rath, V.J. Fulari, Irradiated MnS nanostructures: Surface wettability and photoluminescence properties, Mater. Lett. 98 (2013) 250-253.

DOI: 10.1016/j.matlet.2013.02.012

Google Scholar

[71] H. Pathan, S. Kale, C. Lokhande, J. Ahn, S. Han, O. Joo, Preparation and characterization of amorphous manganese sulfide thin films by SILAR method, Mater. Res. Bull. 42 (2007) 1565-1569.

DOI: 10.1016/j.materresbull.2006.11.017

Google Scholar

[72] A.A. Sagade, N.G. Deshpande, S.D. Chavhan, R.P. Sharma, D.K. Avasthi, F. Singh, A. Tripathi, R.R. Ahire, Gigantic irradiation effect of 100 MeV Au8+ swift heavy ions on the copper sulfide thin films with different chemical compositions, Radiat. Eff. Defect. S. 162 (2007).

DOI: 10.1080/10420150601030525

Google Scholar

[73] N.M. Shmidt, P.S. Vergeles, E.E. Yakimov, E.B. Yakimov, Effect of low-energy electron irradiation on the cathodoluminescence of multiple quantum well (MQW) InGaN/GaN structures, Solid State Commun. 151 (2011) 208–211.

DOI: 10.1016/j.ssc.2010.11.032

Google Scholar

[74] C. Pai S, M.P. Joshi, S.R. Mohan, T.S. Dhami, J. Khatei, K.S.K. Rao, L.M. Kukreja, G. Sanjeev, Effect of electron beam irradiation on photoluminescence properties of thioglycolic acid (TGA) capped CdTe nanoparticles, Adv. Mat. Lett. 4 (2013).

DOI: 10.5185/amlett.2012.ib.113

Google Scholar

[75] K.P. Priyanka, N.A. Sabu, A.T. Sunny, P.A. Sheena, T. Varghese, Effect of electron beam irradiation on optical properties of manganese tungstate nanoparticles, J. Nanotech. 2013 (2013) 580308 (1-6).

DOI: 10.1155/2013/580308

Google Scholar

[76] S. Antohe, V. Ruxandra, H. Alexandru, The effect of the electron irradiation on the electrical properties of thin polycrystalline CdSe and CdS layers, J. Cryst. Growth 237 (2002) 1559-1565.

DOI: 10.1016/s0022-0248(01)02371-5

Google Scholar

[77] A.I. Khudiar, M. Zulfequar, Z.H. Khan, Laser wavelength effect on structural and optical properties of Cd34Se66 nanocrystalline thin film, J. Non-Cryst. Solids 357 (2011) 1264-1269.

DOI: 10.1016/j.jnoncrysol.2010.12.023

Google Scholar

[78] V.V. Yakovlev, V. Lazarov, J. Reynolds, M. Gajdardziska-Josifovska, Laser-induced phase transformations in semiconductor quantum dots, Appl. Phys. Lett. 76 (2000) 2050-(2052).

DOI: 10.1063/1.126251

Google Scholar

[79] M. Gajdardziska-Josifovska, V. Lazarov, J. Reynolds, V.V. Yakovlev, Wavelength dependence of laser-induced phase transformations in semiconductor quantum dots, Appl. Phys. Lett. 78 (2001) 3298-3300.

DOI: 10.1063/1.1347226

Google Scholar

[80] H. Fritzsche, Insulating and Semiconducting Glasses, P. Boolchand (Eds. ), World Scientific Publishers, Singapore, 2000, pp.653-690.

Google Scholar

[81] A.L. Dawar, A. Kumar, S. Sharma, K.N. Tripathi, P.C. Mathur, Effect of laser irradiation on structural, electrical and optical properties of SnO2 films, J. Mater. Sci. 28 (1993) 639-644.

DOI: 10.1007/bf01151238

Google Scholar

[82] A.A. Othman, Photo-induced optical changes in amorphous GaS thin films, Radiat. Phys. Chem. 61 (2001) 563-565.

DOI: 10.1016/s0969-806x(01)00333-4

Google Scholar

[83] S.K. Tripathi, S. Gupta, F.I. Mustafa, N. Goyal, G.S. S Saini, Laser induced changes on a-Ga50Se50 thin Films, J. Phys. D: Appl. Phys. 42 (2009) 185404 (1-7).

DOI: 10.1088/0022-3727/42/18/185404

Google Scholar

[84] M. Sanz, E. Rebollar, R.A. Ganeev, M. Castillejo, Nanosecond laser-induced periodic surface structures on wide band-gap Semiconductors, Appl. Surf. Sci. 278 (2013) 325-329.

DOI: 10.1016/j.apsusc.2012.11.137

Google Scholar

[85] O.O.D. Neto, F. Qu, Effects of an intense laser field radiation on the optical properties of semiconductor quantum wells, Superlattice. Microst. 35 (2004) 1-8.

Google Scholar

[86] L.A. Golovan, B.A. Markov, P.K. Kashkarov, V.Y. Timoshenko, Evaporation effect on laser induced solid-liquid phase transitions in CdTe and HgCdTe, Solid State Commun. 108 (1998) 707-712.

DOI: 10.1016/s0038-1098(98)00485-2

Google Scholar

[87] S. Zhao, K. Yan, Q. Liu, L. Yang, C. Huang, K. Zhao, A. Wang, Lateral photovoltaic effect observed in Co-doped ZnO film induced by 10. 6 μm infrared laser, Optik 124 (2013) 1105-1107.

DOI: 10.1016/j.ijleo.2012.02.051

Google Scholar

[88] Y. Hou, A.H. Jayatissa, Effect of laser irradiation on gas sensing properties of sol–gel derived nanocrystalline Al-doped ZnO thin films, Thin Solid Films 562 (2014) 585-591.

DOI: 10.1016/j.tsf.2014.03.089

Google Scholar

[89] V. Kumari, V. Kumar, D. Mohan, Purnima, B.P. Malik, R.M. Mehra, Effect of surface roughness on laser induced nonlinear optical properties of annealed ZnO thin films, J. Mater. Sci. Technol. 28 (2012) 506-511.

DOI: 10.1016/s1005-0302(12)60090-5

Google Scholar

[90] H.S. Brandi, A. Latgѐ, L.E. Oliveira, Laser dressing effects in low-dimensional semiconductor systems, Solid State Commun. 117 (2001) 83-87.

DOI: 10.1016/s0038-1098(00)00429-4

Google Scholar

[91] P. Gecys, E. Markauskas, M. Gedvilas, G. Raciukaitis, I. Repins, C. Beall, Ultrashort pulsed laser induced material lift-off processing of CZTSe thin-film solar cells, Sol. Energy 102 (2014) 82-90.

DOI: 10.1016/j.solener.2014.01.013

Google Scholar

[92] J.W. Lee, J.O. Choi, J. E. Jeong, S. Yang, S.H. Ahn, K.W. Kwon, C.S. Lee, Energy harvesting of flexible and translucent dye-sensitized solar cell fabricated by laser assisted nanoparticle deposition system, Electrochem. Acta. 103 (2013) 252-258.

DOI: 10.1016/j.electacta.2013.04.050

Google Scholar

[93] J. Bonse, A. Rosenfeld, J. Krügera, Implications of transient changes of optical and surface properties of solids during femtosecond laser pulse irradiation to the formation of laser-induced periodic surface structures, Appl. Surf. Sci. 257 (2011).

DOI: 10.1016/j.apsusc.2010.11.059

Google Scholar

[94] S. Höhm, A. Rosenfeld, J. Krüger, J. Bonse, Area dependence of femtosecond laser-induced periodic surface structures for varying band gap materials after double pulse excitation, Appl. Surf. Sci. 278 (2013) 7-12.

DOI: 10.1016/j.apsusc.2012.10.188

Google Scholar

[95] A. Dawson, P.V. Kamat, Semiconductor-metal nanocomposites. Photoinduced fusion and photocatalysis of gold-capped TiO2 (TiO2/Gold) nanoparticles, J. Phys. Chem. B. 105 (2001) 960-966.

DOI: 10.1021/jp0033263

Google Scholar

[96] A.R. Khataee, M.N. Pons, O. Zahraa, Photocatalytic degradation of three azo dyes using immobilized TiO2 nanoparticles on glass plates activated by UV light irradiation: Influence of dye molecular structure, J. Hazard. Mater. 168 (2009) 451-457.

DOI: 10.1016/j.jhazmat.2009.02.052

Google Scholar

[97] Y. Mun, S. Park, S. An, C. Lee, H.W. Kim, NO2 gas sensing properties of Au-functionalized porous ZnO nanosheets enhanced by UV irradiation, Ceram. Int. 39 (2013) 8615-8622.

DOI: 10.1016/j.ceramint.2013.04.035

Google Scholar

[98] M.R. Balboul, Optical effects induced by gamma and UV irradiation in chalcogenic glass, Radiat. Meas. 43 (2008) 1360-1364.

DOI: 10.1016/j.radmeas.2008.03.007

Google Scholar

[99] G. Villa-Sánchez, D. Mendoza-Anaya, G. Mondragón-Galicia, R. Pérez-Hernández, O. Olea-Mejía, P.R. González-Martínez, Thermoluminescence response induced by UV radiation in Eu-doped zirconia nanopowders, Radiat. Phys. Chem. 97 (2014) 118-125.

DOI: 10.1016/j.radphyschem.2013.11.013

Google Scholar

[100] G. Villa-Sánchez, D. Mendoza-Anaya, M. Eufemia Fernández-García, L. Escobar-Alarcón, O. Olea-Mejía, P.R. González-Martínez, Co nanoparticle effects on the thermoluminescent signal induced by UV and gamma radiation in ZrO2 powders, Opt. Mater. 36 (2014).

DOI: 10.1016/j.optmat.2014.03.002

Google Scholar

[101] R. Chauhan, A.K. Srivastava, A. Tripathi, K.K. Srivastava, Linear and nonlinear optical changes in amorphous As2Se3 thin film upon UV exposure, Prog. Nat. Sci.: Mater. Int. 21 (2011) 205-210.

DOI: 10.1016/s1002-0071(12)60031-8

Google Scholar

[102] P.M.R. Kumar, C.S. Karthia, K.P. Vijayakumar, F. Singh, D.K. Avasthi, T. Abe, Y. Kashiwaba, G.S. Okram, S. Kumar, Modifications of ZnO thin films under dense electronic excitation, J. Appl. Phys. 97 (2005) 013509-013514.

DOI: 10.1063/1.1823574

Google Scholar

[103] A. Solanki, S. Choudhary, V.R. Satsangi, R. Shrivastav, S. Dass, Enhanced photoelectrochemical properties of 100 MeV Si8+ ion irradiated barium titanate thin films, J. Alloy. Compd. 561 (2013) 114-120.

DOI: 10.1016/j.jallcom.2013.01.154

Google Scholar

[104] S. Singh, R. Kumar, N. Singh, Effect of swift heavy ion irradiation on bismuth doped BaS nanostructures, J. Alloy. Compd. 509 (2011) L81-L84.

DOI: 10.1016/j.jallcom.2010.11.103

Google Scholar

[105] J.P. Singh, G. Dixit, R.C. Srivastava, H.M. Agrawal, R. Kumar, Raman and Fourier-transform infrared spectroscopic study of nanosized zinc ferrite irradiated with 200 MeV Ag15+ beam, J. Alloy. Compd. 551 (2013) 370-375.

DOI: 10.1016/j.jallcom.2012.10.006

Google Scholar

[106] A. Solanki, S. Choudhary, V.R. Satsangi, R. Shrivastav, S. Dass, Enhanced photoelectrochemical properties of 100 MeV Si8+ ion irradiated barium titanate thin films, J. Alloy. Compd. 561 (2013) 114-120.

DOI: 10.1016/j.jallcom.2013.01.154

Google Scholar

[107] P. Matheswaran, R. Sathyamoorthy, K. Asokan, Effect of 130 MeV Au ion irradiation on CO2 gas sensing properties of In2Te3 thin films, Sensor Actuat. B-Chem. 177 (2013) 8- 13.

DOI: 10.1016/j.snb.2012.10.115

Google Scholar

[108] B. Tripathi, Y.K. Vijay, F. Singh, D.K. Avasthi, S. Wate, Study of C6+ (80 MeV) ion induced effects on CdS: Mn system, J. Alloy. Compd. 459 (2008) 118-122.

DOI: 10.1016/j.jallcom.2007.05.003

Google Scholar

[109] V.V. Ison, A. Ranga Rao, V. Dutta, P.K. Kulriya, D. K. Avasthi, S.K. Tripathi, Swift heavy ion induced structural changes in CdS thin films possessing different microstructures: A comparative study, J. Appl. Phys. 106 (2009) 023508(1-6).

DOI: 10.1063/1.3173180

Google Scholar

[110] V.V. Ison, A. Ranga Rao, V. Dutta, P.K. Kulriya, D.K. Avasthi, S.K. Tripathi, On the role of microstructure in determining the energy relaxation processes of swift heavy ions in CdTe thin film, J. Phys. D: Appl. Phys. 41 (2008) 105113(1-7).

DOI: 10.1088/0022-3727/41/10/105113

Google Scholar

[111] S. Rehman, R.G. Singh, J.C. Pivin, W. Bari, F. Singh, Structural and spectroscopic modifications of nanocrystalline zinc oxide films induced by swift heavy ions, Vacuum 86 (2011) 87-90.

DOI: 10.1016/j.vacuum.2011.04.019

Google Scholar

[112] D.C. Agarwal, A. Kumar, S.A. Khan, D. Kabiraj, F. Singh, A. Tripathi, J.C. Pivin, R.S. Chauhan, D.K. Avasthi, SHI induced modification of ZnO thin film: Optical and structural studies, Nucl. Instrum. Meth. B 244 (2006) 136-140.

DOI: 10.1016/j.nimb.2005.11.077

Google Scholar

[113] F. Singh, P.K. Kulriya, J.C. Pivin, Origin of swift heavy ion induced stress in textured ZnO thin films: An in situ X-ray diffraction study, Solid State Commun. 150 (2010) 1751-1754.

DOI: 10.1016/j.ssc.2010.07.026

Google Scholar

[114] A. Kumar, S.K. Tripathi, P.K. Kulriya, A. Tripathi, F. Singh, D.K. Avasthi, 100 MeV Ag ions irradiation effects on the optical properties of Ag0. 10(Ge0. 20Se0. 80)0. 90 thin films, J. Phys. D: Appl. Phys. 43 (2010) 095302(1-8).

DOI: 10.1088/0022-3727/43/9/095302

Google Scholar

[115] H.K. Singh, S. Aggarwal, D.C. Agrawal, P. Kulria, S.K. Tripathi, D.K. Avasthi, Study of swift heavy ion irradiation effect on Rhodamine 6G dye for dye sensitize solar cell application, Vacuum 87 (2013) 21-25.

DOI: 10.1016/j.vacuum.2012.07.002

Google Scholar

[116] S. Gupta, D.C. Agarwal, S.K. Tripathi, S. Neeleshwar, B.K. Panigrahi, A. Jacquot, B. Lenoir, D.K. Avasthi, Superiority of ion irradiation over annealing for enhancing the thermopower of PbTe thin films, Radiat. Phys. Chem. 86 (2013) 6-9.

DOI: 10.1016/j.radphyschem.2013.01.009

Google Scholar

[117] S. Gupta, D.C. Agarwal, S.K. Tripathi, A. Tripathi, S. Neeleshwar, D.K. Avasthi, Study of ion beam synthesized nanostructured PbTe surface, Appl. Surf. Sci. 265 (2013) 124- 129.

DOI: 10.1016/j.apsusc.2012.10.148

Google Scholar

[118] S.P. Patel, A.K. Chawla, R. Chandra, J. Prakash, P.K. Kulriya, J.C. Pivin, D. Kanjilal, L. Kumar, Structural phase transformation in ZnS nanocrystalline thin films by swift heavy ion irradiation, Solid State Commun. 150 (2010) 1158-1161.

DOI: 10.1016/j.ssc.2010.03.017

Google Scholar

[119] I. Sulvania, D.K. Avasthi, S.K. Tripathi, M. Hussain, Modifications on CdS thin films due to low energy ion bombardment, Rad. Effects & Defects in Solids 167 (2012) 59-68.

DOI: 10.1080/10420150.2011.569715

Google Scholar

[120] K. Potzger, Ion-beam synthesis of magnetic semiconductors, Nucl. Ins. Methods Phys. Res. B. 272 (2012) 78-87.

Google Scholar

[121] W. Li, M. D. Rodriguez, P. Kluth, M. Lang, N. Medvedev, M. Sorokin, J. Zhang, B. Afra, M. Bender, D. Severin, C. Trautmann, R. C. Ewing, Effect of doping on the radiation response of conductive Nb–SrTiO3, Nucl. Instrum. Meth. B 302 (2013) 40-47.

DOI: 10.1016/j.nimb.2013.03.010

Google Scholar

[122] A. Sharma, M. Varshney, K.D. Verma, Y. Kumar, R. Kumar, Structural and surface microstructure evolutions in SnO thin films under ion irradiation, Nucl. Instrum. Meth. B 308 (2013) 15-20.

DOI: 10.1016/j.nimb.2013.04.054

Google Scholar

[123] V. Saikiran, N.S. Rao, G. Devaraju, G.S. Chang, A.P. Pathak, Formation of Ge nanocrystals from ion-irradiated GeO2 nanocrystals by swift Ni ion beam, Nucl. Instrum. Meth. B 312 (2013) 1-6.

DOI: 10.1016/j.nimb.2013.07.005

Google Scholar

[124] R.U. Mene, M.P. Mahabole, R.S. Khairnar, Surface modified hydroxyapatite thick films for CO2 gas sensing application: effect of swift heavy ion irradiation, Radiat. Phys. Chem. 80 (2011) 682-687.

DOI: 10.1016/j.radphyschem.2011.02.002

Google Scholar

[125] S. Shanmugan, D. Mutharasu, An effect of N+ ion bombardment on the properties of CdTe thin films, Radiat. Phys. Chem. 81 (2012) 201-207.

DOI: 10.1016/j.radphyschem.2011.09.016

Google Scholar

[126] V. Gokulakrishnan, S. Parthiban, E. Elangovan, K. Jeganathan, D. Kanjilal, K. Asokan, R. Martins, E. Fortunato, K. Ramamurthi, Investigation of O7+ swift heavy ion irradiation on molybdenum doped indium oxide thin films, Radiat. Phys. Chem. 81 (2012).

DOI: 10.1016/j.radphyschem.2012.02.037

Google Scholar

[127] H. Rafik, I. Mahmoud, T. Mohamed, B. Abdenacer, TiO2 films photocatalytic activity improvements by swift heavy ions irradiation, Radiat. Phys. Chem. 101 (2014) 1-7.

DOI: 10.1016/j.radphyschem.2014.03.032

Google Scholar

[128] P. Matheswaran, K.M. Abhirami, B. Gokul, R. Sathyamoorthy, J. Prakash, K. Asokan, D. Kanjilal, 130 MeV Au ion irradiation induced dewetting on In2Te3 thin film, Appl. Surf. Sci. 258 (2012) 8558- 8563.

DOI: 10.1016/j.apsusc.2012.05.048

Google Scholar

[129] A.S. El-Said, R. Heller, R.A. Wilhelm, S. Facsko, F. Aumayr, Surface modifications of BaF2and CaF2 single crystals by slow highly charged ions, Appl. Surf. Sci. 310 (2014) 169-173.

DOI: 10.1016/j.apsusc.2014.03.083

Google Scholar

[130] P. Kumar, P. Sharma, A. Solanki, A. Tripathi, D. Deva, R. Shrivastav, S. Dass, V.R. Satsangi, Photoelectrochemical generation of hydrogen using 100 Mev Si8+ ions irradiated electrodeposited iron oxide thin films, Int. J. Hydrogen Energy 373 (2012).

DOI: 10.1016/j.ijhydene.2011.05.041

Google Scholar

[131] A. Kujur, M. Sahoo, R.K. Panda, K. Asokan, D. Behera, The effect of 200 MeV swift heavy Ag ions on the transport property of YBa2Cu3O7-δ thick films, Physica C 492 (2013) 168-173.

DOI: 10.1016/j.physc.2013.07.003

Google Scholar

[132] P. Kannappan, K. Asokan, J.B.M. Krishna, R. Dhanasekaran, Effect of SHI irradiation on structural, surface morphological and optical studies of CVT grown ZnSSe single crystals, J. Alloy Compd. 580 (2013) 284-289.

DOI: 10.1016/j.jallcom.2013.04.161

Google Scholar

[133] M. Kumar Jaiswal, R. Kumar, D. Kanjilal, Dense electronic excitation induced modification in TiO2 doped SnO2 nanocomposite films, J. Alloy. Compd. 610 (2014) 651-658.

DOI: 10.1016/j.jallcom.2014.04.182

Google Scholar

[134] J. Upadhyay, A. Kumar, Engineering polypyrrole nanotubes by 100 MeV Si9+ ion beam irradiation: enhancement of antioxidant activity, Mater. Sci. Eng. C 33 (2013) 4900-4904.

DOI: 10.1016/j.msec.2013.08.009

Google Scholar

[135] R. Verma, C. Lal, I.P. Jaina, Formation of metal silicide by swift heavy ion induced mixing at Mn/Si interface, J. Mater. Sci. Technol. 3 (2014) 257-263.

DOI: 10.1016/j.jmrt.2014.06.007

Google Scholar

[136] B. Tripathi, Y.K. Vijay, F. Singh, D.K. Avasthi, S. Wate, Study of C6+ (80 MeV) ion induced effects on CdS: Mn system, J. Alloy Compd. 459 (2008)118-122.

DOI: 10.1016/j.jallcom.2007.05.003

Google Scholar

[137] R. Naik, R. Ganesan, K.S. Sangunni, Photo and thermal induced effects on (As2S3)0. 85Sb0. 15 amorphous thin films, J. Non-Cryst. Solids 357 (2011) 2344-2348.

DOI: 10.1016/j.jnoncrysol.2010.11.067

Google Scholar

[138] Z.P. Shan, S.L. Gu, S.M. Zhu, W. Liu, K. Tang, H. Chen, J.G. Liu, Y.D. Zheng, Rapid thermal annealing induced changes on the contact of Ni/Au to N-doped ZnO, Appl. Surf. Sci. 254 (2008) 6962-6966.

DOI: 10.1016/j.apsusc.2008.05.118

Google Scholar

[139] M. Rani, S.J. Abbas, S.K. Tripathi, Influence of annealing temperature and organic dyes as sensitizers on sol–gel derived TiO2 films, Mater. Sci. Eng. B-Adv. 187 (2014) 75-82.

DOI: 10.1016/j.mseb.2014.04.010

Google Scholar

[140] M.M. Hafiz, A.A. Othman, M.M. El-nahass, A.T. Al-Motasem, Composition and thermal-induced effects on the optical constants of Ge20Se80-xBix thin films, Physica B 390 (2007) 348-355.

DOI: 10.1016/j.physb.2006.08.036

Google Scholar

[141] I. Nasieka, L. Rashkovetskyi, O. Strilchuk, V. Maslov, E. Venger, Investigation of the thermal annealing effect on the defects structure in γ-irradiated CdZnTe crystals by photoluminescence method, Nucl. Instrum. Meth. B 290 (2012) 26-29.

DOI: 10.1016/j.nimb.2012.09.002

Google Scholar

[142] N. Ali, S.T. Hussain, Y. Khan, N. Ahmad, M.A. Iqbal, S.M. Abbas, Effect of air annealing on the band gap and optical properties of SnSb2S4 thin films for solar cell application, Mater. Lett. 100 (2013) 148-151.

DOI: 10.1016/j.matlet.2013.02.097

Google Scholar

[143] M.T.S. Nair, P.K. Nair, R.A. Zingaro, E.A. Meyers, Enhancement of photosensitivity In chemically deposited CdSe thin films by air annealing, J. Appl. Phys. 74 (1993) 1879-1884.

DOI: 10.1063/1.354796

Google Scholar

[144] S. Erat, H. Metin, M. Ari, Influence of the annealing in nitrogen atmosphere on the XRD, EDX, SEM and electrical properties of chemical bath deposited CdSe thin films, Mater. Chem. Phys. 111 (2008) 114-120.

DOI: 10.1016/j.matchemphys.2008.03.021

Google Scholar

[145] H.M. Kotb, M.A. Dabban, A.Y. Abdel-latif, M.M. Hafiz, Annealing temperature dependence of the optical and structural properties of selenium-rich CdSe thin films, J. Alloy. Compd. 512 (2012) 115-120.

DOI: 10.1016/j.jallcom.2011.09.034

Google Scholar

[146] K. Sharma, A.S. Al-Kabbi, G.S.S. Saini, S.K. Tripathi, Determination of dispersive optical constants of nanocrystalline CdSe (nc-CdSe) thin films, Mater. Res. Bull. 47 (2012) 1400-1406.

DOI: 10.1016/j.materresbull.2012.03.008

Google Scholar

[147] J. Kaur, S.J. Abbas, S.K. Tripathi, Effect of Sn doping on structural and electrical properties of thermally evaporated CdSe thin films, Mater. Focus 3 (2014) 112-118.

DOI: 10.1166/mat.2014.1142

Google Scholar

[148] K. Sharma, A.S. Al-Kabbi, G.S.S. Saini, S.K. Tripathi, Thermally and optically induced effects on sub-band gap absorption in nanocrystalline CdSe (nc-CdSe) thin films, Curr. Appl. Phys. 13 (2013) 964-968.

DOI: 10.1016/j.cap.2013.01.037

Google Scholar

[149] T.S. Shyju, S. Anandhi, R. Indirajith, R. Gopalakrishnan, Effects of annealing on cadmium selenide nanocrystalline thin films prepared by chemical bath deposition, J. Alloy. Compd. 506 (2010) 892-897.

DOI: 10.1016/j.jallcom.2010.07.106

Google Scholar

[150] F. Raoult, B. Fortin, A. Qljemerais, G. Rosse, Y. Colmt, Influence of thermal treatments on the sensitivity of CdSe thin films to oxygen ionosorption, J. Phys. Chem. Solids 53 (1992) 723-732.

DOI: 10.1016/0022-3697(92)90214-x

Google Scholar

[151] U. Farva, C. Park, Influence of thermal annealing on the structural and optical properties of CdSe nanoparticles, Sol. Energ. Mat. Sol. C 94 (2010) 303-309.

DOI: 10.1016/j.solmat.2009.10.003

Google Scholar

[152] S. Lou, C. Zhou, H. Wang, H. Shen, G. Cheng, Z. Du, S. Zhou, L.S. Li, Annealing effects on the photoresponse properties of CdSe nanocrystal thin films, Mater. Chem. Phys. 128 (2011) 483-488.

DOI: 10.1016/j.matchemphys.2011.03.035

Google Scholar

[153] M.D. Athanassopoulou, J.A. Mergos, M.D. Palaiologopoulou, T.G. Argyropoulos, C.T. Dervos, Structural and electrical properties of annealed CdSe films on Ni substrate, Thin Solid Films 520 (2012) 6515-6520.

DOI: 10.1016/j.tsf.2012.06.071

Google Scholar

[154] C. Shao, X. Meng, P. Jing, M. Sun, J. Zhao, Haibo L, Enhancement of electron transfer from CdSe core/shell quantum dots to TiO2 films by thermal annealing, J. Lumin. 142 (2013) 196-201.

DOI: 10.1016/j.jlumin.2013.04.005

Google Scholar

[155] R. Todorov, T. Iliev, K. Petkov, Light-induced changes in the optical properties of thin films of Ge–S–Bi(Tl, In) chalcogenides, J. Non-Cryst. Solids 326 (2003) 263-267.

DOI: 10.1016/s0022-3093(03)00405-8

Google Scholar

[156] K. Ullah, Y.H. Kim, B.E. Lee, S.B. Jo, L. Zhu, S. Ye, W.C. Oh, Visible light induced catalytic properties of CdSe-graphene nanocomposites and study of its bactericidal effect, Chinese Chem. Lett. 25 (2014) 944-946.

DOI: 10.1016/j.cclet.2014.03.050

Google Scholar

[157] R. Naik, S.K. Parida, C. Kumar, R. Ganesan, K.S. Sangunni, Optical properties change in Sb40S40Se20 thin films by light-induced effect, J. Alloy. Compd. 522 (2012) 172-177.

DOI: 10.1016/j.jallcom.2012.01.144

Google Scholar

[158] S.K. Srivastava, S.K. Tripathi, A. Kumar, Photo crystallization in amorphous thin films of Se100-xInx, Solid State Commun. 85 (1993) 281-285.

DOI: 10.1016/0038-1098(93)90453-t

Google Scholar

[159] P.K. Dwivedi, S.K. Tripathi, A. Pradhan, V.N. Kulkarni, S.C. Agarwal, Raman study of ion irradiated GeSe films, J. Non-Cryst. Solids 266-269(1-3) (2000) 924-928.

DOI: 10.1016/s0022-3093(99)00867-4

Google Scholar

[160] Y. Wang, Z. Tang, M.A.C. Duarte, I.P. Santos, M. Giersig, N.A. Kotov, L.M.L. Marza, Mechanism of strong luminescence photoactivation of citrate-stabilized water-soluble nanoparticles with CdSe cores, J. Phys. Chem. B 108 (2004) 15461-15469.

DOI: 10.1021/jp048948t

Google Scholar

[161] K. Arshak, O. Korostynska, Radiation-induced changes in thin film structures, IEEE Proc. -Circuits Devices Syst. 150 (2003) 361-366.

DOI: 10.1049/ip-cds:20030664

Google Scholar