Conductivity Modulation in Polymer Electrolytes and their Composites due to Ion-Beam Irradiation

Article Preview

Abstract:

Polymers are a class of materials widely used in different fields of applications. With imminent applications of polymers, the study of radiation induced changes in polymers has become an obvious scientific demand. The bombardment by ion beam radiations has become one of the most promising techniques in present day polymer research. When the polymers are irradiated, a variety of physical and chemical changes takes place due to energy deposition of the radiation in the polymer matrix. Scissoring, cross-linking, recombination, radical decomposition, etc. are some of the interesting changes that are obvious in polymers. The modification in polymer properties by irradiation depends mainly on the nature of radiation and the type of polymer used.Polymer electrolytes are obtained by modifying polymers by doping, complexing, or other chemical processes. In general, they suffer from low conductivity due to high crystallinity of the matrix. The effect of radiation on polymer electrolyte is expected to alter their crystalline nature vis-a-vis electrical properties. This review article shall elaborate modifications in the physical and chemical properties of polymer electrolytes and their composites. The variations in properties have been explored on PEO based polymer electrolyte and correlated with the parameters responsible for such changes. Also a comparison with different types of the polymers irradiated with a wide range of ion beams has been established.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 239)

Pages:

110-148

Citation:

Online since:

August 2015

Export:

Price:

* - Corresponding Author

[1] Fried W. Billmeyer, Jr., Text Book of Polymer Science, Wiley-Interscience Publication (1984).

Google Scholar

[2] J. Robert, P. Young, A. Lovell, Introduction to Polymers, Chapman & Hall Publishers, 23 May (1991).

Google Scholar

[3] F.M. Gray, Solid Polymer Electrolytes –Fundamentals and Technological Applications, VCH Publishers (1991).

Google Scholar

[4] P.V. Wright, Electrical Conductivity in ionic complexes of poly(ethylene oxide), British Polymer Journal 7 (1975) 319-327.

DOI: 10.1002/pi.4980070505

Google Scholar

[5] S. Rajendran, M. Sivakumar, R. Subadevi, Investigations on the effect of the various plasticizers in PVA–PMMA solid polymer blend electrolytes. Materials Letter 58(5) (2004) 641–649.

DOI: 10.1016/s0167-577x(03)00585-8

Google Scholar

[6] S. Ahmad, S. Ahmad, S.A. Agnihotry, Nanocomposite electrolytes with fumed silica in Poly(methyl methacrylate): thermal, rheological and conductivity studies. Journal of Power Sources 140(1) (2005) 151–156.

DOI: 10.1016/j.jpowsour.2004.08.002

Google Scholar

[7] D. Fink (ed. ), Fundamentals of Ion –Irradiated Polymers, Springer-Verlag Berlin Heidelberg (2004).

Google Scholar

[8] M.B. Armand, J.M. Chabagno and M. Duclot, In: Fast Ion Transport in Solids, (eds. ) P. Vashista, J.N. Mundy and G.K. Shenoy, North-Holland, Amsterdam (1979) p.131.

Google Scholar

[9] M.B. Armand, Solid State Ionics 9 (10) (1983) 745.

Google Scholar

[10] S.A. Hashmi, A. Chandra, and S. Chandra, Solid State Ionics: Materials and Applications, (eds. ) B.V.R. Chowdari and S. Chandra, World Scientific Publication Co., Singapore (1992), p.567.

Google Scholar

[11] M.B. Armand, J.M. Chabagno and M. Duclot, in: Proc. Second International Meeting on Solid Electrolytes, St. Andrews, Scotland, 20-22 Sept., (1978).

Google Scholar

[12] C. Berthier, W. Gorecki, M. Minier, M.B. Armand, J.M. Chabagno, P. Rigaud, Solid State Ionics 11 (1983) 91.

DOI: 10.1016/0167-2738(83)90068-1

Google Scholar

[13] M. Minier, C. Berthier and W. Gorecki, Journal de Physique 45 (1984) 739-744.

Google Scholar

[14] D.E. Fenton, J.M. Parker, P.V. Wright, Complexes of alkali metal ions with Poly(ethylene oxide), Polymer 14 (1973) 589-589.

DOI: 10.1016/0032-3861(73)90146-8

Google Scholar

[15] N. Angulakshmi, V.S. Nahm, V. Swaminathan, S. Thomas, R. Nima Elizabeth, Nanocomposite Polymer Electrolytes for Lithium Batteries, in: Recent Advances in Materials Science, Vol. I: Polymer Processing and Characterization, (eds. ) S. Thomas, D. Ponnamma, A.K. Zachariah, Apple Academic Press, Toronto New Jersey (2013).

Google Scholar

[16] P.V. Wright, An anomalous transition to a lower activation energy for dc electrical conduction above the glass-transition temperature, J. Polym. Sci.: Polym. Phys. Ed. 14 (1976) 955-957.

DOI: 10.1002/pol.1976.180140516

Google Scholar

[17] M.B. Armand, J.M. Chabagn, M. Duclot, in: Fast Ion Transport in Solids: Electrodes and Electrolytes, (eds. ) P. Vashista, J.N. Mundy, G.K. Shenoy, North Holland, New York (1979), p.131.

Google Scholar

[18] B. Scrosati (ed. ), Applications of Electroactive Polymers, Chapman and Hall, London (1993).

Google Scholar

[19] P.G. Bruce (ed. ), Solid State Electrochemistry, Cambridge University Press, Cambridge (1995) 198.

Google Scholar

[20] F.M. Gray, M.B. Armand, in: Handbook of Battery Materials, (ed. ) J.O. Besenhard, Wiley-VCH, (1999).

Google Scholar

[21] H. Ohno, Applications of Polymer Electrolytes: Electrochromics, Sensors and Biology, Electrochim. Acta 37 (1992) 1649-1651.

DOI: 10.1016/0013-4686(92)80130-e

Google Scholar

[22] B. Adhikari, S. Majumdar, Polymers in sensor applications, Prog. Polym. Sci. 29 (2004) 699-766.

Google Scholar

[23] Y. Wang, Recent research progress on polymer electrolytes for dye-sensitized solar cells, Sol. Energy Mater & Sol. Cells 93 (2009) 1167-1175.

DOI: 10.1016/j.solmat.2009.01.009

Google Scholar

[24] S.J. Peighambardoust, S. Rowshanzamir, M. Amjadi, Review of the proton exchange membranes for fuel cell applications, Int. J. Hydrogen Energy 35 (2010) 9349-9384.

DOI: 10.1016/j.ijhydene.2010.05.017

Google Scholar

[25] D. Zhou, G.M. Spinks, G.G. Wallace, C. Tiyapiboonchaiya, D.R. MacFarlane, M. Forsyth, J. Sun, Solid state actuators based on polypyrrole and polymer-in-ionic liquid electrolytes, Electrochim. Acta 48 (2003) 2355-2359.

DOI: 10.1016/s0013-4686(03)00225-1

Google Scholar

[26] V.D. Noto, S. Lavina, G.A. Giffin, E. Negro, B. Scrosati, Polymer electrolytes: Present, past and future, Electrochim. Acta 57 (2011) 4-13.

DOI: 10.1016/j.electacta.2011.08.048

Google Scholar

[27] E. Quartarone, P. Mustarelli, Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives, Chem. Soc. Rev. 40 (2011) 2525-2540.

DOI: 10.1039/c0cs00081g

Google Scholar

[28] R. Borup, J. Meyers, B. Pivovar, Y.S. Kim, R. Mukundan, N. Garland, D. Myers, M. Wilson, F. Garzon, D. Wood, P. Zelenay, K. More, K. Stroh, T. Zawodzinski, J. Boncella, J.E. McGrath, M. Inaba, K. Miyatake, M. Hori, K. Ota, Z. Ogumi, S. Miyata, A. Nishikata, Z. Siroma, Y. Uchimoto, K. Yasuda, K.I. Kimijima, N. Iwashita, Scientific Aspects of Polymer Electrolyte Fuel Cell Durability and Degradation, Chem. Rev. 107 (2007).

DOI: 10.1021/cr050182l

Google Scholar

[29] F.M. Gray, J.R. McCullam, C.A. Vincent, Poly(ethylene oxide) - LiCF3SO3 – polystyrene electrolyte systems, Solid State Ionics 18(19) (1986) 282-286.

DOI: 10.1016/0167-2738(86)90127-x

Google Scholar

[30] R.C. Agrawal, G.P. Pandey, Solid Polymer Electrolyte: Materials designing and all solid state battery applications: an overview, J. Phys. D: Appl. Phys. 41 (2008) 223001-199.

DOI: 10.1088/0022-3727/41/22/223001

Google Scholar

[31] J.R. MacCallum, C.A. Vincent (eds. ), Polymer Electrolyte Reviews, Vol. 1 & 2, Elsevier Applied Science Publishers, London (1987 & 1989).

Google Scholar

[32] F.M. Gray, Polymer electrolytes, Royal Society of Chemistry Monographs, Cambridge (1997).

Google Scholar

[33] M.B. Armand, W. Gorecki, R. Andreani, in: (ed. ) B. Scrosati, Proc. 2nd Int. Meeting on Polymer Electrolytes, New York, Elsevier, Amsterdam (1990), p.91.

Google Scholar

[34] I. Olsen, R. Koksbang, E. Skou, Transference number measurements on a hybrid polymer electrolyte, Electrochim. Acta, 40 (1995) 1701-1706.

DOI: 10.1016/0013-4686(95)00094-u

Google Scholar

[35] G. Petersen, P. Jacobsson, L.M. Torell, A Raman study of ion-polymer and ion-interactions in low molecular weight polyether-LiCF3SO complexes, Electrochim. Acta 37 (1992) 1495-1497.

DOI: 10.1016/0013-4686(92)80097-6

Google Scholar

[36] P.G. Bruce, C.A. Vincent, Effect of ion association on transport in polymer electrolytes, Faraday Discuss. Chem. Soc. 88 (1989) 43-54.

DOI: 10.1039/dc9898800043

Google Scholar

[37] D.W. Pollock, K.J. Williamson, K.S. Weber, L.S. Lyons, L.R. Sharpe, Ion Pairing and Ionic Conductivity in Amorphous Polymer Electrolytes: A Structural Investigation Employing EXAFS, Chem. Mater. 6(11) (1994) 1912–(1914).

DOI: 10.1021/cm00047a004

Google Scholar

[38] J.R. MacCallum, A.S. Tomlin, C.A. Vincent, An investigation of the conducting species in polymer electrolytes, European Polymer Journal 22(10) (1986) 787–791.

DOI: 10.1016/0014-3057(86)90017-0

Google Scholar

[39] S. Schantz, On the ion association at low salt concentrations in polymer electrolytes: A Raman study of NaCF3SO3 and LiClO4 dissolved in poly(propylene oxide), J. Chem. Phys. 94 (1991) 6296.

DOI: 10.1063/1.460418

Google Scholar

[40] A. Bakker, S. Gejji, J. Lindgren, K. Hermansson, M.M. Probst, Contact ion pair formation and ether oxygen coordination in the polymer electrolytes M[N(CF3SO2)2]2(PEO)n for M=Mg, Ca, Sr and Ba, Polymer 36(23) (1995) 4371-4378.

DOI: 10.1016/0032-3861(95)96841-u

Google Scholar

[41] M.J. Reddy, P.P. Chu, Ion pair formation and its effect in PEO: Mg solid polymer electrolyte system, Journal of Power Sources 109(2) (2002) 340-346.

DOI: 10.1016/s0378-7753(02)00084-8

Google Scholar

[42] D.M. Vosshage, B.V.R. Chowdari, XPS studies on (PEO)n LiCF3SO3 and (PEO)nCu(CF3SO3)2 polymer electrolytes, Electrochimica Acta 40 (1995) 2109-2114.

DOI: 10.1016/0013-4686(95)00148-8

Google Scholar

[43] J.E.L. Nest, S. Callens, A. Gandini, A. Armand, A new polymer network for ionic conduction, Electrochim. Acta 37 (1992) 1585-1588.

DOI: 10.1016/0013-4686(92)80116-4

Google Scholar

[44] F.B. Dias, L. Plomp, J.B.J. Veldhuis, Trends in polymer electrolytes for secondary lithium batteries, J. Power Sources 88 (2000) 169-191.

DOI: 10.1016/s0378-7753(99)00529-7

Google Scholar

[45] D.W. Kim , J.K. Park, M.S. Gong, H.Y. Song, Effect of grafting degree and side PEO chain length on the ionic conductivities of NBR-g-PEO based polymer electrolytes, Polym. Eng. Sci. 34 (1994) 1305-1313.

DOI: 10.1002/pen.760341702

Google Scholar

[46] F.M. Gray, J.R. MacCallum, C.A. Vincent, J.R.M. Giles, Novel polymer electrolytes based on ABA block copolymers, Macromolecules 21(2) (1988) 392-397.

DOI: 10.1021/ma00180a018

Google Scholar

[47] A.J. Polak, in: Conductive Polymers and Plastics, (ed). J.M. Margolis, Chapman and Hall, New York, London, (1989), p.41.

Google Scholar

[48] A.F. Diaz, K.K. Kanazawa, G.P. Gardini, Electrochemical polymerization of pyrrole, J. Chem. Soc. Chem. Commun. 14 (1979) 635-636.

DOI: 10.1039/c39790000635

Google Scholar

[49] D.M. Ivory, G.G. Miller, J.M. Sowa, L.W. Shacklette, R.R. Chance, R.H. Baughman, Highly conducting charge-transfer complexes of poly (p-phenylene), J. Chem. Phys. 71 (1979) 1506.

DOI: 10.1063/1.438420

Google Scholar

[50] B. Smitha, S. Sridhar, A.A. Khan, Solid polymer electrolyte membranes for fuel cell applications: a review, J. Membrane Science 259 (2005) 10–26.

DOI: 10.1016/j.memsci.2005.01.035

Google Scholar

[51] M. Oszcipok, M. Zedda, J. Hesselmann, M. Huppmann, M. Wodrich, M. Junghardt, C. Hebling, Portable proton exchange membrane fuel-cell systems for outdoor applications, J. Power Sources 157 (2006) 666-673.

DOI: 10.1016/j.jpowsour.2006.01.005

Google Scholar

[52] D.D. Sood, A.V.R. Reddy, N. Ramamoorthy, Fundamentals of Radiochemistry, Indian Association of Nuclear Chemists and Allied Scientists, Mumbai, India (2004).

Google Scholar

[53] R. Shakeshat, L. Spruch, Mechanism for charge transfer at asymptotically high impact velocity, Reviews in Modern Physics 51 (1979) 369-405.

Google Scholar

[54] M. Toulemonde, W. Assamann, C. Trautmann, F. Gruner, Electronic Sputtering of metals and insulators by swift heavy ions, NIMB 212 (2003) 346-357.

Google Scholar

[55] A. Biswas, D.K. Awasthi, B.K. Singh, S. Lotha, J.P. Singh, D. Fink, B.K. Yadav, B. Bhattacharya, S.K. Bose, Resonant Electron Tunneling in single Quantum well hetrostructure junction of electrodeposited metal semiconductor nanostructure using nuclear track filters, Nucl. Instr. Meth. Phys. Res. B 151 (1999).

DOI: 10.1016/s0168-583x(99)00086-5

Google Scholar

[56] A. Charlesby, Cross-Linking of Polythene by Pile Radiation. Proc. R. Soc. London, A 215 (1952) 187-214; DOI: 10. 1098/rspa. 1952. 0206.

DOI: 10.1098/rspa.1952.0206

Google Scholar

[57] A. Charlesby, The effects of ionizing radiation on polymers, in: Irradiation effects on polymers, (ed. ) C.W. Clegg and A.A. Collyer, Amsterdam, Elsevier, Ch-2 (1991).

Google Scholar

[58] S.A. Saqa'n, H.A. Smadi, A.M. Zihlif, Examination of optical properties and estimation of mechanical energies of irradiated polypropylene and Teflon, Rad. Eff. Def. Sol. 162(6) (2007) 425-432.

DOI: 10.1080/10420150601058237

Google Scholar

[59] V.N. Kuleznev and V.A. Shershnev, The Chemistry and Physics of Polymers (Translated by G. Leib) Moscow: MIR Publishers (1990), p.261.

Google Scholar

[60] R.S. Alger, in: Radiation effects in polymers: Physics and chemistry of the organic solid state, (eds. ) David Fax et al., New York: John Wiley and Sons Inc., Vol III (1965), p.830.

Google Scholar

[61] T. Chen, S. Yao, K. Wang, H. Wang, The modification of mechanical properties by 2 MeV Si ions irradiating polyimide, Nucl. Instr. and Meth. B. 266 (2008) 3091-3094.

DOI: 10.1016/j.nimb.2008.03.168

Google Scholar

[62] A.V. Rajulu, R.L. Reddy, D.K. Avasthi, K. Asokan, Infrared spectroscopic investigation of some polymers and polymer blend films irradiated by a 28Si ion beam, Rad. Eff. Def. Sol. 152 (1) (2000) 57-66.

DOI: 10.1080/10420150008211814

Google Scholar

[63] S.M. Kurtz, O.K. Muratoglu, M. Evans, A.A. Edidin, Advances in the processing, sterilization, and crosslinking of ultra-high molecular weight polyethylene for total joint arthroplasty. Biomaterials 20 (1999) 1659–1688.

DOI: 10.1016/s0142-9612(99)00053-8

Google Scholar

[64] N. Shah, N.L. Singh, C.F. Desai, K.P. Singh, Micro-hardness and radiation damage studies of proton irradiated Kapton films, Radiat. Meas. 36 (2003) 699 -702.

DOI: 10.1016/s1350-4487(03)00229-4

Google Scholar

[65] Y. Ikada, K. Nakamura, S. Ogata, K. Makino, K. Tajima, N. Endoh, T. Hayashi, S. Fujita, A. Fujisawa, S. Masuda, H. Oonishi, Characterization of ultrahigh molecular weight polyethylene irradiated with γ-rays and electron beams to high doses, J. Polym. Sci. A: Polym. Chem. 37 (2) (1999).

DOI: 10.1002/(sici)1099-0518(19990115)37:2<159::aid-pola6>3.0.co;2-g

Google Scholar

[66] W.F. Shen, H.A. Mckellop, R. Salovey, Irradiation of chemically cross-linked ultrahigh molecular weight polyethylene, J. Polym. Sci. B: Polym. Phys. 34 (6) (1996) 1063-1077.

DOI: 10.1002/(sici)1099-0488(19960430)34:6<1063::aid-polb4>3.0.co;2-z

Google Scholar

[67] H.A. Mckellop, Wear modes mechanisms, damage, and debris. Separating cause from effect in the wear of total hip replacements, in: Total Hip Revision Surgery, (eds. ) J.O. Galante, A.G. Rosenberg, J.J. Callaghan, Raven Press, New York (1995).

Google Scholar

[68] J. Liu, B. Li, Y. Wang, Chemical modifications in polyethylene-terephthalate films induced by 35 MeV/u Ar ions, Nucl. Instr. and Meth. B. 166-167 (2000) 641-645.

Google Scholar

[69] A.A. Abiona and A.G. Osinkolu, Gamma-irradiation induced property modification of Polypropylene, Inter. J. Phys. Sci. 5(7) (2010) 960-967.

Google Scholar

[70] E. Balanzat, S. Bouffard, A. Lelvloel, N. Betz, Physico-chemical modifications induced in polymers by swift heavy ions, Nucl. Instr. and Meth. B. 91(1-4) (1994) 140-145.

DOI: 10.1016/0168-583x(94)96204-9

Google Scholar

[71] G. Marletta, Chemical reactions and physical property modifications induced by keV ion beams in polymers, Nucl. Instr. and Meth. B. 46 (1990) 295-305.

Google Scholar

[72] M. Mujahid, P. Singh, D.S. Srivastava, S. Gupta, D.K. Avasthi, D. Kanjilal, Study of chain scission versus crosslinking in MeV ion-irradiated polycarbonate using dielectric constant measurements and UV spectroscopy, Radiat. Meas. 38 (1-6) (2004).

DOI: 10.1016/j.radmeas.2003.09.004

Google Scholar

[73] S.A. Nouh, Physical changes associated with gamma doses of PM-555 solid-state nuclear detector, Radiat. Meas. 38(2) (2004) 167-172.

DOI: 10.1016/j.radmeas.2003.11.004

Google Scholar

[74] T. Steckenreiter, E. Balanzat, H. Fuess, C. Trautmann, Chemical modifications of PET induced by swift heavy ions, Nucl. Instr. and Meth. B. 131 (1997) 159-166.

DOI: 10.1016/s0168-583x(97)00364-9

Google Scholar

[75] D. Fink, F. Hosoi, H. Omichi, T. Sasuga, L. Amaral, Infrared transmission of ion irradiated polymers, Radiat. Eff. Def. Solids 132 (1994) 313- 328.

DOI: 10.1080/10420159408219984

Google Scholar

[76] H.S. Virk, P.S. Chandi, A.K. Srivastava, Physical and chemical changes induced by 70 MeV carbon ions in polyvinylidenedifluoride (PVDF) polymer, Nucl. Instr. and Meth. B. 183 (3, 4) (2001) 329-336.

DOI: 10.1016/s0168-583x(01)00743-1

Google Scholar

[77] H.S. Virk, Physical and chemical response of 70 MeV carbon ion irradiated Kapton-H polymer, Nucl. Instr. and Meth. B. 191 (2002) 739- 743.

DOI: 10.1016/s0168-583x(02)00644-4

Google Scholar

[78] L. Calcagno, G. Compagnini, G. Foti, Ion-beam effects on optical and rheological properties of polystyrene, Phys. Rev. B. 46 (1992) 10573-10578.

DOI: 10.1103/physrevb.46.10573

Google Scholar

[79] P. Sonar, Amit L. Sharma, Amita Chandra, Klaus Muellen, Alok Srivastava, Synthesis and study of conductivity behaviour of blended conducting polymer films irradiated with swift heavy ions of silicon, Curr. Appl. Phys. 3 (2003) 247-250.

DOI: 10.1016/s1567-1739(02)00210-9

Google Scholar

[80] K.S. Samra, S. Thakur, L. Singh, Structural, thermal and optical behavior of 84 MeV oxygen and 120 MeV silicon ions irradiated PES, Nucl. Instr. and Meth. B. 269 (2011) 550-554.

DOI: 10.1016/j.nimb.2011.01.007

Google Scholar

[81] D. Fink, P.S. Alegaonkar, A.V. Petrov, M. Wilhelm, P. Szimkowiak, M. Behar, D. Sinha, W.R. Fahrner, K. Hoppe, L.T. Chadderton, High energy ion beam irradiation of polymers for electronic applications; Nucl. Instr. Meth. Phys. Res. B 236 (2005).

DOI: 10.1016/j.nimb.2005.03.243

Google Scholar

[82] J.M. Cowie, in: Polymers: Chemistry & Physics of Modern Materials, Inter text Books, Billings, Worcester, Great Britain (1973), p.283.

Google Scholar

[83] E.H. Lee, G.R. Rao, L.K. Mansur, Hardness Enhancement and Crosslinking Mechanisms in Polystyrene Irradiated with High Energy Ion-Beams, Conf. 9609280, Research sponsored by the Division of Materials Sciences, U.S. Department of Energy, under contract No. DE- AC 05 -96OR22464 with Lockheed Martin Energy Research Corporation; Trends in Polymer Science 4 (1996).

DOI: 10.4028/www.scientific.net/msf.248-249.135

Google Scholar

[84] E.H. Lee, Ion-Beam Modification of Polyimide, Chapter 17, in: Polyimides: Fundamental Aspects and Technological Applications, (eds. ) K. Mittal, M. Ghosh, Marcel Dekker, New York (1996), pp.471-503.

Google Scholar

[85] T.M. Hall, A. Wagner, L.F. Thompson, Ion beam exposure characteristics of resists: experimental results, J. Appl. Phys. 53(6) (1982) 3997-4010.

DOI: 10.1063/1.331261

Google Scholar

[86] J. Lachance, C. Coia, A.C. Fozza, G. Czeremuszkin, A. Houdayer, M.R. Wertheir, Radiation-induced degradation of polymeric spacecraft materials under protective oxide coatings, Nucl. Instr. and Meth. Phys. Res. B 185 (2001) 328-335.

DOI: 10.1016/s0168-583x(01)00835-7

Google Scholar

[87] J. Davenas, I. Stevenson, N. Celette, S. Cambon, J.L. Gardette, A. Rivaton, L. Vignoud, Stability of polymers under ionizing radiation: The many faces of radiation interaction with polymers, Nucl. Instr. and Meth. Phys. Res. B 191 (2002) 653-661.

DOI: 10.1016/s0168-583x(02)00628-6

Google Scholar

[88] A.G. Chmielewski, M. Haji-Saeid and S. Ahmed, Progress in radiation processing in Polymers, Nucl. Instr. Meth. Phys. Res. B 236 (2005) 44-54.

Google Scholar

[89] A.M.P. Hussain, A. Kumar, D. Saikia, F. Singh, D.K. Awasthi, Study of 160 MeV Ni12+ ion irradiation effects on electrodeposited polypyrrole films, Nucl. Instr. Meth. Phys. Res. B 240 (2005) 871-880.

DOI: 10.1016/j.nimb.2005.06.211

Google Scholar

[90] Vijay Kumar, Yasir Ali, Kashma Sharma, Vinod Kumar, R.G. Sonkawade, A.S. Dhaliwal, H.C. Swart, Swift heavy ions induced surface modifications in Ag-polypyrrole composite films synthesized by an electrochemical route, Nucl. Instr. Meth. Phys. Res. B 323 (2014).

DOI: 10.1016/j.nimb.2014.01.009

Google Scholar

[91] A. Kaur, A. Dhillon and D.K. Avasthi, Effect of 100 MeV swift heavy ions [silver (Ag8+)] on morphological and electrical properties of polypyrrole, J. Appl. Phys. 106 (7), (2009) 073715-073722.

DOI: 10.1063/1.3233915

Google Scholar

[92] S.K. Tripathi, A. Kumar, S.A. Hashmi, Electrochemical redox super-capacitors using PVdF-HFP based gel electrolytes and polypyrrole as conducting polymer electrode, Solid State Ionics177 (33) (2006) 2979-2985.

DOI: 10.1016/j.ssi.2006.03.059

Google Scholar

[93] P. Slepicka, A. Vasina, Z. Klaska, T. Luxbacher, P. Malinsky, A. Mackova, V. Svorcik, Argon plasma irradiation of polypropylene, Nucl. Instr. Meth. Phys. Res. B 268 (2010) 2111-2114.

Google Scholar

[94] C.T. Souza, E.M. Stori, D. Fink, V. Vacik, V. Svorcik, R.M. Papaleo, L. Amaral, J.F. Dias, Electronic behavior of micro-structured polymer foils immersed in electrolyte, Nucl. Instr. Meth. Phys. Res. B 306 (2013) 222-226.

DOI: 10.1016/j.nimb.2012.12.031

Google Scholar

[95] S. Schiestel, P. Banniza, G.K. Wolf, K. Edinger, Modification of intrinsically conduction polymers by ion implantation, Nucl. Instr. Meth. Phys. Res. B 116 (1996) 164-167.

DOI: 10.1016/b978-0-444-82334-2.50212-4

Google Scholar

[96] P. Nanda, S.K. De, S. Manna, U. De, S. Tarafdar, Effect of gamma irradiation on a polymer electrolyte: Variation in crystallinity, viscosity and ion-conductivity with dose, Nucl. Instr. Meth. Phys. Res. B 268 (2010) 73-78.

DOI: 10.1016/j.nimb.2009.09.063

Google Scholar

[97] M. Maitra, K.C. Verma, M. Sinha, Rajesh Kumar, T.R. Middya, S. Tarafdar, P. Sen, S.K. Bandyopadhyay, U. De, DSC characterization of ion beam modifications in ion conducting PEO-salt polymers, Nucl. Instr. Meth. Phys. Res. B 244 (2006) 239-242.

DOI: 10.1016/j.nimb.2005.11.071

Google Scholar

[98] Rajesh Kumar, U. De, P.M.G. Nambissan, M. Maitra, S. Asad Ali, T.R. Middya, S. Tarafdar, F. Singh, D.K. Awasthi, R. Prasad, Positron lifetime studies of the dose dependence of nanohole free volumes in ion-irradiated conducting poly-(ethylene-oxide)-salt polymers, Nucl. Instr. Meth. Phys. Res. B 266 (2008).

DOI: 10.1016/j.nimb.2007.11.059

Google Scholar

[99] S. Nagata, Y. Konishi, B. Tsuchiya, K. Toh, S. Yamamoto, K. Takahiro, T. Shikama, Ion beam effects on electrical characteristics of proton conductive polymer, Nucl. Instr. Meth. Phys. Res. B 257 (2007) 519-522.

DOI: 10.1016/j.nimb.2007.01.111

Google Scholar

[100] T. Asmus, Gerhard K. Wolf, Modification and structuring of conducting polymer films on insulating substrates by ion beam treatment, Nucl. Instr. Meth. Phys. Res. B 166-167 (2000) 732-736.

DOI: 10.1016/s0168-583x(99)00872-1

Google Scholar

[101] V. Manjunatha, K. Subramanya and H. Devendrappa, Structural optical and electrical conductivity properties of Li2SO4 doped polymer electrolytes, Composite Interfaces 21(2) (2014) 121-131.

DOI: 10.1080/15685543.2013.838850

Google Scholar

[102] Y. Kimura, J. Chen, M. Asano, Y. Maekawa, R. Katakai, M. Yoshida, Anisotropic proton-conducting membranes prepared from swift heavy ion-beam irradiated FTFE films, Nucl. Instr. Meth. Phys. Res. B 263 (2007) 463-467.

DOI: 10.1016/j.nimb.2007.07.010

Google Scholar

[103] Horia M. Nizam El-Din, Manal F. Abou Taleb, Abdel Wahab M. El-Naggar, Metal sorption and swelling characters of acrylic acid and sodium alginate based hydrogels synthesized by gamma irradiation, Nucl. Instr. Meth. Phys. Res. B 266 (2008).

DOI: 10.1016/j.nimb.2008.03.215

Google Scholar

[104] Baljit Singh, S. Kumar, Synthesis and Characterization of psyllium-NVP based drug delivery system through radiation crosslinking polymerization, Nucl. Instr. Meth. Phys. Res. B 266 (2008) 3417-3430.

DOI: 10.1016/j.nimb.2008.04.022

Google Scholar

[105] R.M. Radwan, S. Lotfy, O.S. Desouky, Enhancement of the electrical performance of poly(vinyl) alcohol by doping with chlorophyll and gamma irradiation, Nucl. Instr. Meth. Phys. Res. B 266 (2008) 3953-3958.

DOI: 10.1016/j.nimb.2008.07.009

Google Scholar

[106] H.M. Nizam, Swelling and drug release properties of acrylamide/carboxymethyl cellulose networks formed by gamma irradiation, Radiat. Phys. Chem. 79(6) (2010) 725–730.

DOI: 10.1016/j.radphyschem.2010.01.011

Google Scholar

[107] S. Raghu, S. Kilarkaje, G. Sanjeev, G.K. Nagaraja, H. Devendrappa, Effect of electron beam irradiation on polymer electrolytes: Change in morphology, crystallinity, dielectric constant and AC conductivity with dose, Radiation Physics and Chemistry 98 (2014).

DOI: 10.1016/j.radphyschem.2014.01.024

Google Scholar

[108] A.M. El Sayed, Synthesis and controlling the optical and dielectric properties of CMC/PVA blend via gamma-rays irradiation, Nucl. Instr. Meth. Phys. Res. B 321 (2014) 41-43.

DOI: 10.1016/j.nimb.2013.12.020

Google Scholar

[109] M. Sen, A. Yakar, Enhancement of copolymerization of itaconic acid with N-vinyl 2-pyrrolidone by radiation in the presence of cross-linking agent, Nucl. Instr. Meth. Phys. Res. B 234 (2005) 226-234.

DOI: 10.1016/j.nimb.2005.01.002

Google Scholar

[110] D. Saikia, A.M.P. Hussain, A. Kumar, F. Singh, D.K. Avasthi, Ionic conduction studies in Li3+ ion irradiated P(VDF-HFP)-(PC+DEC)-LiCF3SO3 gel polymer electrolyte, Nucl. Instr. Meth. Phys. Res. B 244 (2006) 230-234.

DOI: 10.1016/j.nimb.2005.11.153

Google Scholar

[111] Robertso S. Benson, Use of radiation in biomaterials science, Nucl. Instr. Meth. Phys. Res. B 191 (2002) 752-757.

Google Scholar

[112] Somik Banerjee, M. Deka, A. Kumar and Udayan De, Ion Irradiation Effects in some Electro-active and Engineering Polymers: Studies by Conventional and Novel Techniques, in: Defect and Diffusion Forum 341 (2013).

DOI: 10.4028/www.scientific.net/ddf.341.1

Google Scholar

[113] J.P. Biersack and L.G. Haggmark, A Monte Carlo computer program for the transport of energetic ions in amorphous targets, Nucl. Instr. Meth. 174 (1980) 257-269.

DOI: 10.1016/0029-554x(80)90440-1

Google Scholar

[114] B. Bhattacharya, R.K. Nagarale and Pramod K. Singh, Effect of Sodium–mixed Anion Doping in PEO based Polymer Electrolytes, High Performance Polymers 22 (2010) 498–512.

DOI: 10.1177/0954008309104931

Google Scholar

[115] D. Saikia, A. Kumar, F. Singh, Ionic conduction in 70 MeV C5+-ion-irradiated poly(vinylidenefluoride- co-hexafluoropropylene)-based gel polymer electrolytes, J. Appl. Phys. 98 (2005) 043514.

DOI: 10.1063/1.2030417

Google Scholar

[116] D.K. Pradhan, R.N.P. Choudhary, B.K. Somantaray, Studies of Structural, Thermal and Electrical behavior of polymer nanocomposite electrolytes, Express Polymer Letters 2(9) (2008) 630-638.

DOI: 10.3144/expresspolymlett.2008.76

Google Scholar

[117] Th. J. Singh, Ganeshsanjeev, K. Siddappa, S. V. Bhat, Large enhancement of the ionic conductivity in an electron-beam-irradiated [poly(ethylene glycol)]xLiClO4 solid polymer electrolyte, J. Polym. Sci. B: Polymer Physics 42(7) (2004) 1299-1311.

DOI: 10.1002/polb.20008

Google Scholar

[118] N. Binesh, S.V. Bhat, Effects of a plasticizer on protonic conductivity of polymer electrolyte (PEG) (100) NH4ClO4, Solid State Ionics 122 (1999) 291-299.

DOI: 10.1016/s0167-2738(99)00079-x

Google Scholar

[119] Y. Ito, K. Kanehori, K. Miyauchi, T. Kudo, Ionic conductivity of polymer electrolyte film deposited by vacuum evaporation of poly(ethylene oxide) and LiI, Solid State Ionics 23(1-2) (1987) 69-75.

DOI: 10.1016/0167-2738(87)90083-x

Google Scholar

[120] Amit Saxena, Divya Singh, S.P. Pandey, S.K. Tomar, K. Asokan, D. Kanjilal, Ranvir Kumar and B. Battacharya, Conductivity Modulation of PEO based Polymer and composite electrolyte to Li3+ Ion Bombardment, Proceedings of Physics; Electroactive Polymer: Materials and Devices 3 (2009).

DOI: 10.1002/masy.200950302

Google Scholar

[121] T. Stergiopoulos, I.M. Arabatzis, G. Katsaros, P. Falaras, Binary Polyethylene Oxide/ Titania Solid-State Redox Electrolyte for Highly Efficient Nanocrystalline TiO2 Photo- electrochemical Cells, Nano Letters 2 (11) (2002) 1259-1261.

DOI: 10.1021/nl025798u

Google Scholar

[122] F. Hosoi, Y. Aoki, M. Hagiwara, H. Omichi, M. M. Sellah, Preparation of highly oriented poly-diacetylene films with ion beam irradiation, Radiat. Eff. Def. Solids 126 (1993) 351.

DOI: 10.1080/10420159308219740

Google Scholar

[123] Divya Singh, Amit Saxena, S.P. Pandey, Sandeep Tomar, K. Ashokan, D. Kanjilal; Ion –Beam Modification of PEO based polymer electrolytes, Macromol. Symp. 277 (2009) 8-13.

DOI: 10.1002/masy.200950302

Google Scholar

[124] E. H. Lee, Ion-beam modification of polymeric materials –fundamental principles and applications, Nucl. Instr. Meth. Phys. Res. B 151 (1999) 29-41.

Google Scholar

[125] Udayan De, Modifications of polymers by additives & irradiations and their characterizations Journal of Polymer Engineering 31 (2011): 299–307, DOI 10. 1515/POLYENG. 2011. 061.

Google Scholar

[126] Rajesh Kumar, Udayan De, P.M.G. Nambissan, M. Maitra, S. Asad Ali, T.R. Middya, S. Tarafdar, F. Singh, D.K. Avasthi, Rajendra Prasad, Positron lifetime studies of the dose dependence of nanohole free volumes in ion-irradiated conducting poly-(ethylene-oxide)– salt polymers, Nucl. Instrum. Meth. Phys. Res. B 266 (2008).

DOI: 10.1016/j.nimb.2007.11.059

Google Scholar

[127] A. Kumar, D. Saikia, F. Singh, D. K. Avasthi, Li3+ ion irradiation effects on ionic conduction in P(VDF–HFP)–(PC+DEC)–LiClO4 gel polymer electrolyte system, Solid State Ionics 177 (2006) 2575-2579.

DOI: 10.1016/j.ssi.2006.04.015

Google Scholar

[128] R.E. Barker, Jr., C.R. Thomas, Effects of Moisture and High Electric Fields on Conductivity in Alkali-Halide-Doped Cellulose Acetate, J. Appl. Phys. 35(11) (1964) 3203-3215.

DOI: 10.1063/1.1713200

Google Scholar

[129] Michele Vittadello, David I. Waxman, Paul J. Sideris, Zhehong Gan, Keti Vezzù, Enrico Negro, Ahmad Safari, and Vito Di Noto, Steve G. Greenbaum, Iodide-conducting polymer electrolytes based on poly-ethylene glycol and MgI2: Synthesis and structural characterization, Electrochimica Acta 57 (2011).

DOI: 10.1016/j.electacta.2011.07.133

Google Scholar

[130] Divya Singh, B. Bhattacharya, Conductivities and Dielectric Studies on PVP based polymer electrolytes, Submitted to Nucl. Instrum. Meth Phys. Res. B (2015).

Google Scholar