Ti(C,N)-Based Cermets: Critical Review of Achievements and Recent Developments

Article Preview

Abstract:

The paper describes briefly the historical development and presents in more detail solid-state properties such as hardness, heat conductivity, thermal expansion and mechanical properties of titanium carbonitride Ti (C,N), the basis of the hard phase of cermets. The metallurgy of Ti (C,N)-based cermets with respect to microstructure formation during sintering and the impact on properties are presented in more detail. The various influences such as W and/or Mo content, Mo/W ratio, C content and C/N ratio, binder phase content and binder phase composition (Co/Ni), sintering time, dwell time, alloy state of powders and grain size were critically evaluated and are presented in form of fracture toughness vs. hardness graphs. A table gives a reference list on the study of these influences. TRS data on cermets were collected and summarised in a separate table, too. The focus is put on grades which have the potential of being fabricated soon in industrial processes for production of cermet tools. Application examples for metal cutting, sawing and chip bonding are presented. In two final sections recent modifications and achievements such as graded microstructures, multicomponent binder, and hybrid microstructures are also briefly presented together with an outlook on the future potential of cermet applications.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 274)

Pages:

53-100

Citation:

Online since:

May 2018

Export:

Price:

[1] Schröter K 1923 Gesinterte harte Metallegierung und Verfahren zu ihrer Herstellung German Patent DE420689.

Google Scholar

[2] Schwarzkopf P, Hirschl I 1931 Mehrere Metallkarbide enthaltendes Hartmetall, insbesondere für Formkörper oder Werkzeugteile Austrian Patent AT160172.

Google Scholar

[3] Kieffer R and Kölbl F 1952 Über die Entwicklung und Eigenschaften warm- und zunderfester Hartlegierungen auf Titankarbidbasis mit Nickel-Kobalt-Chrom-Bindern Planseeber. Pulvermetall. 1, 17-35.

Google Scholar

[4] Redmond J C and Graham J W 1952 Met. Progr. 61(4), 67-70.

Google Scholar

[5] Moskowitz D and Humenic M 1966 Cemented titanium carbide cutting tools, in: Modern Developments in P/M 3, 83-94, Hausner H.H. (eds). Springer, Boston, MA.

DOI: 10.1007/978-1-4684-7712-2_6

Google Scholar

[6] Freudhofmeier M 1970 Über die Herstellung von Hartmetallen auf der Basis von Nitriden und Karbonitriden der IVa und Va Metalle Thesis, TH Vienna.

Google Scholar

[7] Kieffer R, Ettmayer P, Freudhofmeier M 1971 Über neuartige Nitrid- und Karbonitrid-Hartmetalle Metall 25(12), 1335-1342.

Google Scholar

[8] Rudy E 1973 Boundary phase stability and critical phenomena in higher-order solid solution systems J. Less-Common Met. 33, 43-70.

DOI: 10.1016/0022-5088(73)90056-8

Google Scholar

[9] Doi H, Nishigaki K 1976 Binder phase strengthening through precipitation of intermetallic compounds in titanium carbide base cermet with high binder concentration, in: Modern developments in P/M 11, 525-542, Plenum Press.

Google Scholar

[10] Nishigaki K, Yoshimura H, Doi H 1980 For the purpose of improving mechanical and cutting properties of Ti(C0.7N0.3)-15Ni-8Mo alloy AIN was added to the alloy J.Jap. Soc. Powd. Powd.Met. 27(2), 50-55.

Google Scholar

[11] Moskowitz D, Humenic M 1980 Cemented TiC base tools with improved deformation resistance, in: Modern Developments in P/M 14, ed. H.H. Hausner et al. 307-320.

Google Scholar

[12] Ettmayer P, Kolaska H 1989 Cermets der neuen Generation Metall 43(8), 742-749.

Google Scholar

[13] Snell P O 1974 Effect of carbon content and sintering temperature on structure formation and properties of a TiC-24%Mo-15% Ni alloy Planseeber. Pulvermetall. 22(2), 91-104.

Google Scholar

[14] Nishigaki K, Doi, H 1980 Effect of Additional Carbon Content on Mechanical and Cutting Properties of TiC0.7N0.3-15Ni-8Mo Alloy J. Jap.Soc. Powd. Powd. Metall. 27(4) 130-136.

Google Scholar

[15] Suzuki H, Hayashi K, Matsubara, H, Tokumoto, K 1983 High Temperature Strength of TiC-Mo2C-Ni Alloys Containing Nitrogen J. Jap. Soc. Powd. Powd. Metall. 30(3), 106-111.

Google Scholar

[16] Gee M G, Reece M J, Roebuck B 1992 High resolution electron microscopy of Ti(C,N) cermets J. Hard Mater. 3(2), 119-143.

Google Scholar

[17] Andrén H-O, Rolander U, Lindahl P 1993/1994 Phase composition in cemented carbides and cermets Int. J. Refract. Met.&Hard Mater. 12(3), 107-113.

DOI: 10.1016/0263-4368(93)90059-o

Google Scholar

[18] Zackrisson J, Rolander U, Andrén H-O 2001 Development of cermet microstructures during sintering Metall.Mater.Trans. A 32(1), 85-94.

DOI: 10.1007/s11661-001-0104-z

Google Scholar

[19] Córdoba J M, Chicardi E, Gotor F J 2013 Liquid-phase sintering of Ti(C,N)-based cermets. The effects of binder nature and content on the solubility and wettability of hard ceramic phases J. Alloys Compds. 559, 34–38.

DOI: 10.1016/j.jallcom.2013.01.046

Google Scholar

[20] Peng Y, Buchegger C, Lengauer W, Du Y, Zhou P 2016 Solubilities of grain-growth inhibitors in WC-Co-based cemented carbides: Thermodynamic calculations compared to experimental data Int. J. Refract. Met. & Hard Mater. 61 121–127.

DOI: 10.1016/j.ijrmhm.2016.08.012

Google Scholar

[21] Ettmayer P, Lengauer W 1989 The Story of Cermets powd. metall. intern. 21(2), 37-38.

Google Scholar

[22] Berger L M, Ettmayer P, Schultrich B 1994 Influencing factors on the carbothermal reduction of titanium dioxide without and with simultaneous nitridation Int. J. Refract. Met.Hard Mater. 12, 161–172.

DOI: 10.1016/0263-4368(93)90044-g

Google Scholar

[23] Steinkellner P, Etschmaier A, Rabitsch K, Lengauer W 2008 Carbothermal Synthesis of TiC and Ti(C,N) powders in a lab-scale reactor Proc. 2nd Int. Congress on Ceramics ICC2 Verona (I), CD edition.

Google Scholar

[24] Ettmayer P, Kolaska H, Lengauer W, Dreyer K 1995 Ti(C,N) Cermets – Metallurgy and Properties Int.J.Refr.Met.& Hard.Mater. 13, 343-351 (1995).

DOI: 10.1016/0263-4368(95)00027-g

Google Scholar

[25] Leitner G, Jaenicke-Roessler K, Gestrich T, Breuning T 1997 Shrinkage, liquid phase formation, phase transformation and gas reactions during the sintering of WC-Co hard metals Proc Int. Conf. Powder Metall. Particulate Mater. 2, 12-15.

Google Scholar

[26] Chen L, Lengauer W, Dreyer K 2000 Advances in modern nitrogen-containing hardmetals and cermets Int.J.Refract.Met.& Hard Mater. 18, 153-161.

DOI: 10.1016/s0263-4368(00)00016-0

Google Scholar

[27] Garcia J, Lengauer W 2001 Quantitative Mass Spectrometry of Decarburisation and Denitridation of Cemented Carbonitrides During Sintering Mikrochim Acta 136, 83-89.

DOI: 10.1007/s006040170072

Google Scholar

[28] Findenig G, Buchegger C, Lengauer W, Veitsch C, Demoly A 2017 Investigation of the main influencing parameters on the degassing behaviour of titanium carbonitrides using mass spectrometry Int.J.Refr.Met.&Hard Mater. 63, 38-46.

DOI: 10.1016/j.ijrmhm.2016.07.019

Google Scholar

[29] Schwarz V, Scagnetto F, Lengauer W 2018 Influence of composition on the outgassing behaviour of Ti(C,N)-based cermets, Proc.EuroPM 2018, in press.

Google Scholar

[30] Demoly A, Veitsch C, Lengauer W, Rabitsch K 2011 Effect of submicron Ti(C,N) on the microstructure and the mechanical properties of Ti(C,N)-based cermets Int.J.Refr.Met.&Hard Mater. 29(6), 716-723.

DOI: 10.1016/j.ijrmhm.2011.05.007

Google Scholar

[31] Schwarz V, Zivadinovic I, Lisnard B, Traxler F, Viala R, Lengauer W 2016 Optimised properties of Ti(C,N)-based cermets by variation of the W/Mo ratio Proc. WorldPM 2016, 9.-13.10.2016, Hamburg (D), Session 45 HM – Cermets, USB Version, EPMA, Shrewsbury, UK, ISBN 978-1-899072-47-7.

Google Scholar

[32] Lindahl P, Rosén A E, Gustafson P, Rolander U, Andrén H-O 2000 Effect of pre-alloyed raw materials on the microstructure of a (Ti,W)(C,N)-Co cermet Int.J. Refract.Met.& Hard Mater. 18, 273-279 (2000).

DOI: 10.1016/s0263-4368(00)00029-9

Google Scholar

[33] Shetty, D K , Wright, I G 1986 On estimating fracture toughness of cemented carbides from Palmqvist crack sizes J. Mater. Sci. Lett. 5(3), 365-368.

DOI: 10.1007/bf01748108

Google Scholar

[34] Roebuck B 1996 Magnetic moment (saturation) measurements on hardmetals Int.J.Refract. Met. Hard Mater. 14(5-6), 419-424.

DOI: 10.1016/s0263-4368(96)00035-2

Google Scholar

[35] Zhang M, Yang Q, Xiong W, Huang B, Ruan L, Moa Q, Li S 2018 Effect of graphite content on magnetic and mechanical properties of TiC-TiN-Mo-Ni cermets J. Magnet. Magnet. Mater. 451, 385-390.

DOI: 10.1016/j.jmmm.2017.11.033

Google Scholar

[36] Mari D, Bolognini S, Feusier G, Cutard T, Viatte T, Benoit W 2003 TiMoCN based cermets Part II. Microstructure and room temperature mechanical properties Int.J. Refract.Met. & Hard Mater. 21, 47-53.

DOI: 10.1016/s0263-4368(03)00011-8

Google Scholar

[37] Binder S, Lengauer W, Ettmayer P, Bauer J, Debuigne J, Bohn M 1995 Phase Equilibria in the Systems Ti-C-N, Zr-C-N and Hf-C-N J.Alloys Compds. 217, 128-136.

DOI: 10.1016/0925-8388(94)01314-8

Google Scholar

[38] Jonsson S 1996 Calculation of the Ti-C-N system Z. Metallk. 87(9), 713-720.

Google Scholar

[39] Wawrzik S, Zhou P, Buchegger C, Lengauer W 2015 Metallurgy and thermochemistry of cermet/hardmetal laminates Int.J.Refr.Met.& Hard Mater. 50, 282-289.

DOI: 10.1016/j.ijrmhm.2015.02.007

Google Scholar

[40] Doi H, Nomura T, Tobioka M, Takahashi K, Hara A 1985 Thermodynamic evaluation of equilibrium nitrogen pressure and WC separation in Ti-W-C-N system carbonitirde Proc. 11th Plansee Seminar 1, 825-843.

Google Scholar

[41] Lengauer W, Binder S, Aigner K, Ettmayer P, Guillou A, Debuigne J, Groboth G 1995 Solid-State Properties of Group IVb Carbonitrides J.Alloys Compds. 217, 137-147.

DOI: 10.1016/0925-8388(94)01315-9

Google Scholar

[42] Königshofer R, Liersch A, Lengauer W, Koch T, Scheerer M, Hohenauer W 2004 Solid-state properties of binary, ternary and quaternary transition metal carbonitrides Proc. WorldPM 2004, Vienna (A), Vol.3, pp.593-598.

Google Scholar

[43] Hochenauer R, Lengauer W 2017 Structure and Properties of WC-MC-Co hardmetals and of their MC and M(C,N) phases Proc. EuroPM 2017, 01.-05.10.2017 Milano (I), Session 26, USB, EPMA, Shrewsbury, UK, ISBN 978-1-1899072.

Google Scholar

[44] Aigner K, Lengauer W, Rafaja D, Ettmayer P 1994 Lattice Parameters and Thermal Expansion of Ti(CxN1-x), Zr(CxN1-x), Hf(CxN1-x) and TiN1-x from 298-1473K Measured by High-Temperature X-ray Diffraction J.Alloys Compds. 215, 121-126.

DOI: 10.1016/0925-8388(94)90828-1

Google Scholar

[45] Yang Q, Lengauer W, Koch T, Scheerer M, Smid I 2000 Hardness and Elastic Properties of Ti(CxN1‑x), Zr(CxN1-x) and Hf(CxN1-x) J.Alloys Compds. 309, L5-L9 (2000).

DOI: 10.1016/s0925-8388(00)01057-4

Google Scholar

[46] Kral C, Lengauer W, Rafaja D, Ettmayer P 1998 Critical Review on Elastic Properties of Transition Metal Carbides, Nitrides and Carbonitrides, J.Alloys Compds. 265(1-2), 215-233 (1998).

DOI: 10.1016/s0925-8388(97)00297-1

Google Scholar

[47] Lengauer W 2000 Transition Metal Carbides, Nitrides and Carbonitrides, in: Handbook of Ceramic Hard Materials, Vol.I, pp.202-252, ed. R.Riedel, Wiley-VCH, Weinheim (2000).

DOI: 10.1002/9783527618217.ch7

Google Scholar

[48] Mathe B A, Comins J D, Every A G, Lengauer W 2014 Thermal dependence of elastic properties of polycrystalline TiC0.97 and TiC0.40N0.60 alloys studied by surface Brillouin scattering Int.J.Refr.Met.&Hard Mater. 45, 212-217.

DOI: 10.1016/j.ijrmhm.2014.04.013

Google Scholar

[49] Chen L, Lengauer W, Ettmayer P 2000 Metallurgical Reactions and Microstructure Developments During Sintering of Modern Cermets and Cemented Carbonitrides Proc. Advances in Powder Metallurgy and Particulate Materials, Part 8, pp.51-71.

Google Scholar

[50] Yoshimura H, Sugizawa T, Nishigaki K, Doi H 1983 Reaction occurring during sintering and the characteristics of TiC-20TiN-15WC-10TaC9Mo-5.5Ni-11Co cermet Int.J.Refract. Met&Hard Mater. 2(4), 170-174.

Google Scholar

[51] Yang J K, Lee H-C 1996 Microstructural evolution during the sintering of a Ti(C,N)-Mo2C-Ni alloy Mater. Sci. Engineer. A 209, 213-217.

Google Scholar

[52] Lindhal P, Gustafson P, Rolander U, Stals L, Andrén H-O 1999 Microstructure of model cermets with high Mo or W content Int.J.Refract.Met.& Hard Mater. 17, 411-421.

DOI: 10.1016/s0263-4368(99)00032-3

Google Scholar

[53] Ahn S, Kang S 2000 Formation of Core/Rim Structures in Ti(C,N)-WC-Ni Cermets via Dissolution and Precipitation Process J. Am. Ceram. Soc. 83, 1489-1494.

DOI: 10.1111/j.1151-2916.2000.tb01415.x

Google Scholar

[54] Li P, Ye J, Liu Y, Yang D, Yu H 2012 Study on the formation of core-rim structure in Ti(CN)-based cermets Int.J.Refract.Met.&Hard Mater. 35, 27-31.

DOI: 10.1016/j.ijrmhm.2012.03.012

Google Scholar

[55] Demoly A, Veitsch C, Lengauer W, Rabitsch K 2012 Cermets based on new submicron Ti(C,N) powder: microstructural development during sintering and mechanical properties, in: Advances in Sintering Science and Technology II: Ceram. Trans. 232, pp.57-69.

DOI: 10.1002/9781118486955.ch6

Google Scholar

[56] Iparraguirre I, Rodriguez N, Ibarreta F, Martinez R, Sanchez J M 2014 Effect of the Cr content on the sintering behaviour of TiCN-WC-Ni-Cr3C2 powder mixtures Int.J.Refract.Met.&Hard Mater. 43, 125-131.

DOI: 10.1016/j.ijrmhm.2013.11.012

Google Scholar

[57] Min K, Kang S 2003 Rim structure in Ti(C0.7N0.3)-CW-Ni Systems J. Amer. Ceram. Soc. 86, 1761-1766.

Google Scholar

[58] Lengauer W 1995 Multiphase Reaction Diffusion in Transition Metal-Carbon and Transition Metal-Nitrogen Systems J.Alloys Compds. 229, 80-92 (1995).

DOI: 10.1016/0925-8388(95)01683-x

Google Scholar

[59] Jonsson S 1996 Assessment of the Ti-W-C system and calculations in the Ti-W-C-N system Z. Metallk. 87(10), 788-795.

DOI: 10.1515/ijmr-1996-871009

Google Scholar

[60] Park S, Kang S 2005 Toughened ultrafine (Ti,W)(C,N)-Ni cermets Scripta Mater. 52, 129-133.

DOI: 10.1016/j.scriptamat.2004.09.017

Google Scholar

[61] Brookes K 1998 Hardmetals and other Hard Materials, Int. Carbide Data, East Barnet, UK, ISBN 0950899569.

Google Scholar

[62] Gerschwiler K 1998 Untersuchungen zum Verschleißverhalten von Cermets beim Drehen und Fräsen, Shaker Verlag Band 28/98, Aachen ISBN 3-8265-4346-7.

Google Scholar

[63] DIN EN ISO 4499-2 2010 Deutsches Institut für Normung e.V.

Google Scholar

[64] Cutard T, Bolognini S, Feusier G, Verdon C, Viatte T, Benoit W 1997 Microstructure and mechanical properties of Ti(C,N)-Mo2C-(Ni,Co) cermets as a function of their chemical composition Key Engineer. Mater. 132-136, 747-750.

DOI: 10.4028/www.scientific.net/kem.132-136.747

Google Scholar

[65] Wu Y, Xiong J, Guo Z, Yang M, Chen J, Xiong S, Fan H, Luo J 2011 Microstructure and fracture toughness of Ti(C0.7N0.3)-WC-Ni cermets Int.J.Refract.Met.&Hard Mater. 29, 85-89.

DOI: 10.1016/j.ijrmhm.2010.08.004

Google Scholar

[66] Cutard T, Viatte T, Feusier G, Benoit W 1996 Microstructure and high temperature mechanical properties of Ti(C0.7N0.3)-Mo2C-Ni cermets Mater. Sci. Engineer. A 209, 218-227.

DOI: 10.1016/0921-5093(95)10100-4

Google Scholar

[67] Zackrisson J, Andrén H-O 1999 Effect of carbon content on the microstructure and mechanical properties of (Ti,W,Ta,Mo)(C,N)-(Co,Ni) cermets Int.J.Refract.Met.& Hard Mater. 17, 265-273.

DOI: 10.1016/s0263-4368(98)00074-2

Google Scholar

[68] Russias J, Cardinal S, Aguni Y, Fantozzi G, Bienvenu K, Fontaine J 2005 Influence of titanium nitride addition on the microstructure and mechanical properties of TiC-based cermets Int.J.Refract.Met.&Hard Mater. 23, 358-362.

DOI: 10.1016/j.ijrmhm.2005.05.008

Google Scholar

[69] Ahn S, Kim H, Kang S 2007 Effect of secondary carbide addition on properties of Ti(C0.7N0.3)-Ni cermets Mater. Sci. Forum 534-536, 1165-1168.

DOI: 10.4028/www.scientific.net/msf.534-536.1165

Google Scholar

[70] Rahimi Dizaji V, Rahmani M, Faghihi Sani M, Nemati Z, Akbari J 2007 Microstructure and cutting performance investigation of Ti(C,N)-based cermets containing various types of secondary carbides Int.J.Machin.Tools & Manufact. 47, 768-772.

DOI: 10.1016/j.ijmachtools.2006.09.012

Google Scholar

[71] Li Y, Liu N, Zhang X, Rong C 2008 Effect of WC content on the microstructure and mechanical properties of (Ti,W)(C,N)-Co cermets Int.J.Refract.Met.&Hard Mater. 26, 33-40.

DOI: 10.1016/j.ijrmhm.2007.01.003

Google Scholar

[72] Li Y, Liu N, Zhang X, Rong C 2008 Effect of Mo addition on the microstructure and mechanical properties of ultra-fine grade TiC-TiN-WC-Mo2C-Co cermets Int.J.Refract. Met.&Hard Mater. 26, 190-196.

DOI: 10.1016/j.ijrmhm.2007.05.005

Google Scholar

[73] Jun W, Ying L, Ping Z, Jiancai P, Jinwen Y, Minjing T, 2009 Effect of WC on the microstructure and mechanical properties in the Ti(C0.7N0.3)-xWC-Mo2C-(Co,Ni) system Int.J.Refract.Met.&Hard Mater. 27, 9-13.

DOI: 10.1016/j.ijrmhm.2008.01.010

Google Scholar

[74] Zhang Y, Zheng Y, Zhong J, Yuan Q, Wu P 2009 Effect of carbon content and cooling mode on the microstructure and properties of Ti(C,N)-based cermets Int.J.Refract.Met.&Hard Mater. 27, 1009-1013.

DOI: 10.1016/j.ijrmhm.2009.07.018

Google Scholar

[75] Qu J, Xiong W, Ye D, Yao Z, Liu W, Lin S 2010 Effect of WC content on the microstructure and mechanical properties of Ti(C0.5N0.5)-WC-Mo-Ni cermets Int.J.Refract.Met.&Hard Mater. 28, 243-249.

DOI: 10.1016/j.ijrmhm.2009.10.005

Google Scholar

[76] Wu P, Zheng Y, Zhao Y, Yu H 2010 Effect of TaC addition on the microstructures and mechanical properties of Ti(C,N)-based cermets Mater. Design 31, 3537-3541.

DOI: 10.1016/j.matdes.2010.01.047

Google Scholar

[77] Seo M, Kim J, Kang S 2011 Effect of carbon content on the microstructure and properties of (Ti0.7W0.3)C-Ni cermet Int.J.Refract.Met.&Hard Mater. 29, 424-428.

DOI: 10.1016/j.ijrmhm.2011.01.004

Google Scholar

[78] Dong G, Xiong J, Chen J, Guo Z, Wan W, Yi C, Chen H 2012 Effect of WC on the microstructure and mechanical properties of nano Ti(C,N)-based cermets Int.J.Refract.Met.&Hard Mater. 35, 159-162.

DOI: 10.1016/j.ijrmhm.2012.05.009

Google Scholar

[79] Wan W, Xiong J, Yang M, Guo Z, Dong G, Yi C 2012 Effect of Cr3C2 addition on the corrosion behavior of Ti(C,N)-based cermets Int.J.Refract.Met.&Hard Mater. 31, 179-186.

DOI: 10.1016/j.ijrmhm.2011.10.013

Google Scholar

[80] Chicardi E, Torres Y, Córdoba J M, Hvizdoš P, Gotor F J 2014 Effect of tantalum content on the microstructure and mechanical behavior of cermets based on (TixTa1-x)(C0.5N0.5) solid solutions Mater. Design 53, 435-444.

DOI: 10.1016/j.matdes.2013.07.039

Google Scholar

[81] Naidoo M, Johnson O, Sigalas I, Herrmann M 2014 Influence of tantalum on the microstructure and properties of Ti(C,N)-Ni cermets Int.J.Refract.Met.&Hard Mater. 42, 97-102.

DOI: 10.1016/j.ijrmhm.2013.08.008

Google Scholar

[82] Rafiaei S M, Kim J-H, Kang S 2014 Effect of nitrogen and secondary carbide on the microstructure and properties of (Ti0.93W0.07)C-Ni cermets Int.J.Refract. Met.&Hard Mater. 44, 123-128.

DOI: 10.1016/j.ijrmhm.2014.02.001

Google Scholar

[83] Zhang G, Xiong W, Yang Q, Yao Z, Chen S, Chen X 2014 Effect of Mo addition on microstructure and mechanical properties (Ti,W)C solid solution based cermets Int.J.Refract.Met.&Hard Mater. 43, 77-82.

DOI: 10.1016/j.ijrmhm.2013.11.004

Google Scholar

[84] Xu Q, Ai X, Zhao J, Gong F, Pang J, Wang Y 2015 Effects of metal binder on the microstructure and mechanical properties of Ti(C,N)-based cermets J.Alloys Compds. 644, 663-672.

DOI: 10.1016/j.jallcom.2015.05.059

Google Scholar

[85] Deng Y, Jiang X Q, Zhang Y H, Chen H, Tu M J, Deng L, Zou J P 2016 The effect of Co particle structures on the mechanical properties and microstructure of TiCN-based cermets Mater. Sci. Engineer. A 675, 164-170.

DOI: 10.1016/j.msea.2016.08.050

Google Scholar

[86] Park C, Nam S, Kang S 2016 Carbide/binder interfaces in Ti(CN)-(Ti,W)C/(Ti,W)(CN)-based cermets J. Alloys Compds. 657, 671-677.

DOI: 10.1016/j.jallcom.2015.10.121

Google Scholar

[87] Park C, Nam S, Kang S 2016 Enhanced toughness of titanium carbonitride-based cermets by addition of (Ti,W)C carbides Mater. Sci. Engineer. A 649, 400-406.

DOI: 10.1016/j.msea.2015.10.025

Google Scholar

[88] Zhao Y, Zheng Y, Li Y, Zhou W, Zhang G, Zhang J, Xiong W 2017 Microstructure and performance of graded Ti(C,N)-based cermets modified by nitriding treatment during different sintering stages Int.J.Refract.Met.&Hard Mater. 62, 1-8.

DOI: 10.1016/j.ijrmhm.2016.10.016

Google Scholar

[89] Kim J W, Ahn S Y, Kang S 2009 Effect of the complete solid-solution phase on the microstructure of Ti(CN)-based cermet Int.J.Refract.Met.&Hard Mater. 27, 224-228.

DOI: 10.1016/j.ijrmhm.2008.07.012

Google Scholar

[90] Chicardi E, Torres Y, Córdoba J M, Sayagués MJ, Rodríguez J A, Gotor F J 2013 Effect of sintering time on the microstructure and mechanical properties of (Ti,Ta)(C,N)-based cermets Int.J.Refract.Met.&Hard Mater. 38, 73-80.

DOI: 10.1016/j.ijrmhm.2013.01.001

Google Scholar

[91] Zhou H, Huang C, Zou B, Liu H, Zhu H, Yao P, Wang J 2014 Effects of sintering processes on the mechanical properties and microstructure of Ti(C,N)-based cermet cutting tool materials Int.J.Refract.Met.& Hard Mater. 47, 71-79.

DOI: 10.1016/j.ijrmhm.2014.06.023

Google Scholar

[92] Wang Y, Kou Z, Liu Y, Liu F, Duan W, Deng J, Ma Y, Ma D, Tan L, Li C, Zhang Y, He D 2016 Ti(C,N)-based cermets sintered under high pressure Int.J.Refract. Met.&Hard Mater. 54, 203-209 (2016).

DOI: 10.1016/j.ijrmhm.2015.07.035

Google Scholar

[93] Bellosi A, Calzavarini R, Faga M G, Monteverde F, Zancolò C, D'Errico G E 2003 Characterisation and application of titanium carbonitride-based cutting tools J. Mater. Process. Technol. 143-144, 527-532.

DOI: 10.1016/s0924-0136(03)00339-x

Google Scholar

[94] Roosaar T, Kübarsepp J, Klaasen H, Viljus M 2008 Wear performance of TiC-base cermets Mater. Sci. 14(3), 238-241.

DOI: 10.1016/j.wear.2010.01.006

Google Scholar

[95] Canteli J A, Cantero J L, Marín N C, Gómez B, Gordo E, Miguélez M H 2010 Cutting performance of TiCN-HSS cermet in dry machining J. Mater. Process. Technol. 210, 122-128.

DOI: 10.1016/j.jmatprotec.2009.08.003

Google Scholar

[96] Klaasen H, Kübarsepp J, Roosaar T, Viljus M, Traksmaa R 2010 Adhesive wear performance of hardmetals and cermets Wear 268, 1122-1128.

DOI: 10.1016/j.wear.2010.01.006

Google Scholar

[97] Chai Y, Liu H, Huang C, Zou B, Liu H 2013 Study of influencing factors of mechanical properties of Ti(C,N)-based cermets Key Engineer. Mater. 589-590, 578-583.

DOI: 10.4028/www.scientific.net/kem.589-590.578

Google Scholar

[98] Mari D, Bolognini S, Feusier G, Cutard T, Verdon C, Viatte T, Benoit W 2003 TiMoCN based cermets Part I. Morphology and phase composition Int.J. Refract.Met.&Hard Mater. 21, 37-46.

DOI: 10.1016/s0263-4368(03)00010-6

Google Scholar

[99] Lin N, Wu C H, He Y H, Zhang D F 2012 Effect of Mo and Co additions on the microstructure and properties of WC-TiC-Ni cemented carbides Int.J.Refract.Met.&Hard Mater. 30, 107-113.

DOI: 10.1016/j.ijrmhm.2011.07.011

Google Scholar

[100] Liu Y, Jin Y, Yu H, Ye J 2011 Ultrafine (Ti,M)(C,N)-based cermets with optimal mechanical properties Int.J.Refract.Met.&Hard Mater. 29, 104-107.

DOI: 10.1016/j.ijrmhm.2010.08.007

Google Scholar

[101] Liu N, Yin W, Zhu L 2007 Effect of TiC/TiN powder size on microstructure and properties of Ti(C,N)-based cermets Mater. Sci. Engineer. A 445-446, 707-716.

DOI: 10.1016/j.msea.2006.10.003

Google Scholar

[102] Guo Z, Xiong J, Yang M, Wang J, Sun L, Wu Y, Chen J, Xiong S 2009 Microstructure and properties of Ti(C,N)-Mo2C-Fe cermets Int. J.Refract. Met. & Hard Mater. 27, 781-783.

DOI: 10.1016/j.ijrmhm.2009.01.003

Google Scholar

[103] Dios M, Kraleva I, González, Alvaredo P, Ferrari B, Gordo E, Bermejo R 2018 Mechanical characterization of Ti(C,N)-based cermets fabricated through different colloidal processing routes J.Alloys Compds. 732, 806-817.

DOI: 10.1016/j.jallcom.2017.10.274

Google Scholar

[104] Wang X, Liu Y 2017 Weibull analysis on transverse rupture strength of Ti(C,N)-based cermets Mat.Science & Engineering of Powder Metallurgy 22(4), 546-555.

Google Scholar

[105] Xu Q, Ai X, Zhao J, Qin W, Wang Y, Gong F 2015 Comparison of Ti(C,N)-based cermets processed by hot-pressing sintering and conventional pressureless sintering J.Alloys Compds. 619, 538-543.

DOI: 10.1016/j.jallcom.2014.08.261

Google Scholar

[106] Chen M, Zhuang Q, Lin N, He Y 2017 Improvement in microstructure and mechanical properties of Ti(C,N)-Fe cermets with the carbon additions J.Alloys Compds. 701, 408-415.

DOI: 10.1016/j.jallcom.2017.01.119

Google Scholar

[107] Xiong J, Guo Z, Yang M, Shen B 2008 Preparation of ultra-fine TiC0.7N0.3-based cermets Int.J.Refract.Met.&Hard Mater. 26, 212-219.

Google Scholar

[108] Cassel C 1994 Einsatzverhalten von Cermet-Schneidstoffe bei der Drehbearbeitung, Fortschritt-Berichte VDI, Reihe 2: Fertigungstechnik, Nr.318.

Google Scholar

[109] Kennametal Inc 2017 private communication M. Wolf, Mistelgau, Germany.

Google Scholar

[110] Vicenzi B, Risso L, Calzavarini R, 2001 High performance milling and gear hobbing by means of cermet tools with a tough (Ti,W,Ta)(C,N)-Co,Ni,W composition Int.J.Refract.Met.&Hard Mater.19, 11-16.

DOI: 10.1016/s0263-4368(00)00040-8

Google Scholar

[111] Chen X, Xu J, Xiao Q 2015 Cutting performance and wear characteristics of Ti(C,N)-based cermet tool in machining hardened steel Int.J.Refract.Met.& Hard Mater. 52, 143-50.

DOI: 10.1016/j.ijrmhm.2015.06.006

Google Scholar

[112] Kim J, Kim M, Kang M, Kang S 2013 Material properties and tool performance of Ti-based solid solution cermets for mico end-mill applications Int.J.Refract.Met.& Hard Mater. 36, 278-282.

DOI: 10.1016/j.ijrmhm.2012.10.005

Google Scholar

[113] Liu N, Chao S, Yang H 2006 Cutting performances, mechanical property and microstructure of ultra-fine grade Ti(C,N)-based cermets Int.J.Refract.Met.Hard Mater. 24, 445-452.

DOI: 10.1016/j.ijrmhm.2005.09.001

Google Scholar

[114] Zhang H, Tang S, Yan J, Hu X 2007 Cutting performance of titanium carbonitride cermet tools Int.J.Refract.Met.&Hard Mater. 25, 440-444.

DOI: 10.1016/j.ijrmhm.2006.10.003

Google Scholar

[115] Abrão A M, Moreira M C, Faria P E, Campos Rubio J C 2014 High-performance circular sawing of AISI 1045 steel with cermet and tungsten carbide inserts J. Mechan. Sci. Technol. 28(10), 4275-4282.

DOI: 10.1007/s12206-014-0941-5

Google Scholar

[116] http://www.carbideprocessors.com/pages/carbide-parts/cermet-ii-saw-blades-in-industrial-applications.html.

Google Scholar

[117] Brokelmann M, McKeown M 2016 Heavy copper wire bonding ready for industrial mass production Proc. 1st Int. Symp. 3D Power Electron. Integration and Manufact. NC State University, Raleigh, Article 7570581.

DOI: 10.1109/3dpeim.2016.7570581

Google Scholar

[118] de la Obra A G, Avilés M A, Torres Y, Chicardi E, Gotor F J 2017 A new family of cermets: Chemically complex but microstructurally simple Int.J. Refract. Met.& Hard Mater. 63(1), 17-25.

DOI: 10.1016/j.ijrmhm.2016.04.011

Google Scholar

[119] Yoon B-K, Lee B-A, Kang S-J L 2005 Growth behavior of rounded (Ti,W)C and faceted WC grains in a Co matrix during liquid phase sintering Acta Mater. 53(17), 4677-4685.

DOI: 10.1016/j.actamat.2005.06.021

Google Scholar

[120] Kang Y, Kang S 2010 WC-reinforced (Ti,W)(CN) J.Europ. Ceram. Soc. 30, 793-798.

Google Scholar

[121] Gotor F J, Bermejo R, Córdoba J M, Chicardi E, Medri V, Dalle Fabbriche D, Torres Y 2014 Processing and characterisation of cermet/hardmetal laminates with strong interfaces Mater. Design 58, 226-233.

DOI: 10.1016/j.matdes.2014.01.076

Google Scholar

[122] Kang Y, Kang S 2010 The surface microstructure of TiC-(Ti,W)C-WC-Ni cermets sintered in a nitrogen atmosphere Mater. Sci. Engineer. A 527, 7241-7246.

DOI: 10.1016/j.msea.2010.08.006

Google Scholar

[123] Lengauer W, Dreyer K 2002 Functionally Graded Hardmetals J.Alloys Compds. 338(1-2), 194-212.

DOI: 10.1016/s0925-8388(02)00232-3

Google Scholar

[124] Ucakar V, Kral C, Dreyer K, Lengauer W 2002 Near-Surface Microstructural Modification of (Ti,W)(C,N) Hardmetals by Nitridation Int.J.Refr.Met.&Hard Mater. 20, 195-200.

DOI: 10.1016/s0263-4368(02)00002-1

Google Scholar

[125] Lengauer W, Dreyer K 2006 Tailoring hardness and fracture toughness gradients in functional gradient hardmetals Int.J.Refract.Met.&Hard Mater. 24, 155-161.

DOI: 10.1016/j.ijrmhm.2005.03.008

Google Scholar

[126] Wawrzik S, Demoly A, Veitsch C, Lengauer W 2011 Ti(C,N)-Based Cermets: Evolution and Stability of Microstructure within Sintering and High-Temperature/High-Pressure Annealing Proc. EuroPM 2011, Barcelona (E), Vol.1, paper 170, CD-ROM Edition, EPMA, Shrewsbury, UK, ISBN 978-1-899072-23-1.

Google Scholar

[127] Janisch D, Lengauer W, Rödiger K, Dreyer K, van den Berg H 2010 Co capping: Why is sintered hardmetal sometimes covered with binder? Int.J.Refract.Met.&Hard Mater. 28, 466-471.

DOI: 10.1016/j.ijrmhm.2010.02.006

Google Scholar

[128] García J, Englund S, Haglöf F 2017 Controlling cobalt capping in sintering process of cermets Int.J.Refract.Met.&Hard Mater. 62, 126-133.

DOI: 10.1016/j.ijrmhm.2016.06.008

Google Scholar

[129] Prakash L J 2014 Properties and applications of WC hardmetals with iron based binders Proc. 9th Int. Conf. on Tungsten, Refractory and Hardmaterials 113-125.

Google Scholar

[130] Zhu G, Liu Y, Ye J 2013 Fabrication and properties of Ti(C,N)-based cermets with multi-component AlCoCrFeNi high-entropy alloys binder Mater. Lett. 113, 80-82.

DOI: 10.1016/j.matlet.2013.08.087

Google Scholar

[131] Liu B, Wang J, Chen J, Fang Q, Liu Y 2017 Ultra-High Strength TiC/Refractory High-Entropy-Alloy Composite Prepared by Powder Metallurgy JOM 69(4) 651-656.

DOI: 10.1007/s11837-017-2267-0

Google Scholar

[132] Ettmayer P, Hörmanseder W 1986 Phase equilibria between high melting nitrides and refractory binder metals High Temp. High Press. 18(2), 161-172.

Google Scholar

[133] British Geological Survey 2015 Risk List http://www.bgs.ac.uk/mineralsuk/statistics/riskList.html.

Google Scholar