Microstructure and Mechanical Properties of High Strength Alloyed Steel for Aerospace Application

Article Preview

Abstract:

The high strength aerospace steel alloyed with Cr, Mn, Si, Ni, W and Mo was studied. The austenite transformations under continuous cooling conditions were investigated using the dilatometer analysis at the cooling rates 0.1...30 °C/s. The mechanical properties of the studied steel were determined after the conventional quenching and tempering heat treatment. The dependences of the mechanical properties on the tempering temperature were obtained. The novel quenching and partitioning heat treatment was applied to the steel under consideration. The microstructure and the mechanical properties were studied after three different modes of the quenching and partitioning (QP) treatment: single-stage QP, two-stage QP and single-stage QP with subsequent tempering (QPT).

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 284)

Pages:

351-356

Citation:

Online since:

October 2018

Export:

Price:

* - Corresponding Author

[1] A. Mouritz, Introduction to Aerospace Materials, Woodhead Publishing Ltd., Cambridge, (2012).

Google Scholar

[2] B. Liscic, Steel heat treatment, in: G.E. Totten, M.A.H. Howes (Eds.), Steel Heat Treatment Handbook, CRC Press, USA, 1997, 527-662.

Google Scholar

[3] L.X. Sun, N.R. Tao, M. Kuntz, J.Q. Yu, K. Lu, Annealing-induced Hardening in a Nanostructured Low-carbon Steel Prepared by Using Dynamic Plastic Deformation, J. Mater. Sci. Technol., 30 (2014) 731-735.

DOI: 10.1016/j.jmst.2014.03.008

Google Scholar

[4] H.K.D.H. Bhadeshia, R.W.K. Honeycombe, Steels: Microstructure and Properties, Fourth Edition, Elsevier Ltd., Cambridge, (2017).

Google Scholar

[5] B.C. De Cooman, Yu. Estrin, S.K. Kim, Twinning-induced plasticity (TWIP) steels, Acta Mater., 142 (2018) 283-362.

DOI: 10.1016/j.actamat.2017.06.046

Google Scholar

[6] P. Lan, J. Zhang, Tensile property and microstructure of Fe-22Mn-0.5C TWIP steel, Mater. Sci. Eng. A, 707 (2017) 373-382.

DOI: 10.1016/j.msea.2017.09.061

Google Scholar

[7] Y.Z. Tian, Y. Bai, L.J. Zhao, S. Gao, H.K. Yang, A. Shibata, Z.F. Zhang, N. Tsuji, A novel ultrafine-grained Fe-22Mn-0.6C TWIP steel with superior strength and ductility, Mater. Char., 126 (2017) 74-80.

DOI: 10.1016/j.matchar.2016.12.026

Google Scholar

[8] A.J. Clarke, J.G. Speer, M.K. Miller, R.E. Hackenberg, D.V. Edmonds, D.K. Matlock, F.C. Rizzo, K.D. Clarke, E. De Moor, Carbon partitioning to austenite from martensite or bainite during the quench and partition (Q&P) process: A critical assessment, Acta Mater., 56 (2008).

DOI: 10.1016/j.actamat.2007.08.051

Google Scholar

[9] D.V. Edmonds, K. He, F.C. Rizzo, B.C. De Cooman, D.K. Matlock, J.G. Speer, Quenching and partitioning martensite – A novel steel heat treatment, Mater. Sci. Eng. A., 438-440 (2006) 25-34.

DOI: 10.1016/j.msea.2006.02.133

Google Scholar

[10] J.G. Speer, F.C. Rizzo, D.K. Matlock, D.V. Edmonds, The Quenching and Partitioning, Process: Background and Recent Progress, Mater. Res., 8 (2005) 417-423.

DOI: 10.1590/s1516-14392005000400010

Google Scholar

[11] J.G. Speer, Phase transformations in quenched and partitioned steels, in: E. Pereloma, D.V. Edmonds (Eds.), Phase transformations in steels, Woodhead Publishing Ltd., Cambridge, 2012, 247-270.

DOI: 10.1533/9780857096111.2.247

Google Scholar

[12] J. Dong, X. Zhou, Y. Liu, C. Li, C. Liu, H. Li, Effects of Quenching-Partitioning-Tempering Treatment on Microstructure and Mechanical Performance of Nb-V-Ti Microalloyed Ultra-high Strength Steel, Mater. Sci. Eng. A., 690 (2017) 283-293.

DOI: 10.1016/j.msea.2017.03.020

Google Scholar

[13] G. Gao, H. Zhang, X. Gui, Z. Tan, B. Bai, Tempering Behavior of Ductile 1700 MPa Mn-Si-Cr-C Steel Treated by Quenching and Partitioning Process Incorporating Bainite Formation, J. Mater. Sci. Technol., 31 (2015) 199-204.

DOI: 10.1016/j.jmst.2014.07.010

Google Scholar

[14] K. Zhang, P. Liu, W. Li, Z. Guo, Y. Rong, Ultrahigh strength-ductility steel treated by a novel quenching–partitioning–tempering process, Mater. Sci. Eng. A, 619 (2014) 205-211.

DOI: 10.1016/j.msea.2014.09.100

Google Scholar

[15] H.Y. Li, X.W. Lu, W.J. Li, X.J. Jin, Microstructure and Mechanical Properties of an Ultrahigh-Strength 40SiMnNiCr Steel during the One-Step Quenching and Partitioning Process, Metal. Mater. Trans. A., 41 (2010) 1284-1300.

DOI: 10.1007/s11661-010-0184-8

Google Scholar

[16] M.Y. Demeri, Advanced High-Strength Steels. Science, Technology, and Application, ASM International, USA, (2013).

Google Scholar

[17] J.G. Speer, E. De Moor, A.J. Clarke, Critical Assessment 7: Quenching and partitioning,/ Mater. Sci. Technol., 31 (2015) 3-9.

Google Scholar

[18] S. Keeler, M. Kimchi (Eds.), Advanced high-strength steels application guidelines. Version 5.0, World Auto Steel, Belgium, (2014).

Google Scholar

[19] M.V. Maisuradze, M.A. Ryzhkov, Y.V. Yudin, A.A. Kuklina, Transformations of Supercooled Austenite in a Promising High-Strength Steel Grade Under Continuous Cooling Conditions, Metal Sci. Heat Treat., 59 (2017) 486-490.

DOI: 10.1007/s11041-017-0176-z

Google Scholar

[20] M.V. Maisuradze, Y.V. Yudin, M.A. Ryzhkov, Numerical simulation of pearlitic transformation in steel 45Kh5MF, Metal Sci. Heat Treat., 56 (2015) 512-516.

DOI: 10.1007/s11041-015-9791-8

Google Scholar