Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-06-01T22:54:21.629Z Has data issue: false hasContentIssue false

DIAPAUSE INDUCTION AND POST-DIAPAUSE EMERGENCE IN TRICHOGRAMMA MINUTUM RILEY (HYMENOPTERA: TRICHOGRAMMATIDAE): THE ROLE OF HOST SPECIES, TEMPERATURE, AND PHOTOPERIOD

Published online by Cambridge University Press:  31 May 2012

J.E. Laing
Affiliation:
Department of Environmental Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
J.E. Corrigan
Affiliation:
Department of Environmental Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1

Abstract

Trichogramma minutum Riley entered diapause, in the prepupal stage, in eggs of Lambdina fiscellaria fiscellaria Guenée held at 15°C, 12L:12D, but failed to do so in eggs of Ephestia kuehniella (Zeller), Sitotroga cerealella (Olivier), or Choristoneura fumiferana (Clemens) held under these conditions. The parasitoids emerged without diapause from eggs of all host species held at 25°C, 16L:8D, indicating a role of temperature or photoperiod, or both, in the diapause of the parasitoids in eggs of L. fiscellaria held at 15°C, 12L:12D. Percentage emergence of parasitoids from eggs of L. fiscellaria was virtually the same (>80%) after passing the winter outdoors or after approximately 3 months at 2 °C in the laboratory as it was when reared indoors in this host at 25°C, 16L:8D. Emergence of T. minutum was very poor (<20%) after long-term, low-temperature storage in eggs of C. fumiferana, E. kuehniella, or S. cerealella. Apparently, T. minutum must parasitize diapause host eggs in order to enter diapause, and good survival after long-term low-temperature storage is possible only when T. minutum is in diapause. Trichogramma minutum will enter diapause in L. fiscellaria after 14 days at 15°C, 12L:12D, but the parasitoids need a period of storage at 2°C, 0L:24D for a high percentage of emergence to happen. Over 50% emergence was recorded for T. minutum, held for 300 days in eggs of L. fiscellaria.

Résumé

Des Trichogramma minutum Riley sont entrés en diapause avant la nymphose dans des oeufs de Lambdina fiscellaria fiscellaria Guenée gardés à 15°C, à une photopériode 12L : 12O, mais n’ont pas subi de diapause dans des oeufs d’Ephestia kuehniella (Zeller), Sitotroga cerealella (Olivier) ou Choristoneura fumiferana (Clemens) gardés dans les mêmes conditions. Tous les parasitoïdes ont émergé sans subir de diapause des oeufs de toutes les espèces hôtes gardés a 25°C, à une photopériode de 16L : 8O, ce qui indique que la température et (ou) la photopériode ont un rôle à jouer dans le déclenchement de la diapause des parasitoïdes dans les oeufs as L. fiscellaria gardés a 15°C, 12L : 12O. Le pourcentage de parasitoïdes émergés des oeufs de L. fiscellaria s’est avéré à peu près le même (>80%) après l’hiver à l’extérieur ou après une période de 3 mois en laboratoire à 2°C qu’après un hiver à l’intérieur à25 °C, 16L : 8O. Très peu de guêpes (<20%) ont réussi à parvenir à l’émergence après un long séjour à température froide dans des oeufs de C. fumiferana, E. kuehniella ou S. cerealella. Il semble que T. minutum doive parasiter les oeufs en diapause de son hôte avant de pouvoir entrer en diapause et que le taux de survie après un long séjour à température faible dans les oeufs de l’hôte ne puisse être élevé que lorsque la guêpe est en diapause. Trichogramma minutum peut entrer en diapause dans les oeufs de L. fiscellaria après 14 jours à 15°C, à une photopériode 12L : 12O, mais les parasitoïdes ont besoin d’une période à 2°C, 0L : 24O, pour que leur taux d’émergence soit élevé. Plus de 50% des T. minutum gardés durant 300 jours dans des oeufs de L. fiscellaria sont parvenues à l’émergence.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Askew, R.R. 1971. Parasitic Insects. American Elsevier, New York, NY. 316 pp.Google Scholar
Beck, S.D. 1968. Insect Photoperiodism. Academic Press, New York, NY. 288 pp.Google Scholar
Bigler, F., Baldinger, J., and Luisoni, L.. 1982. L'impact de la méthode d'élevage et de l'hôte sur la qualité intrinsèque de Trichogramma evanescens Westw. Les Colloques de l'Institut National de la Recherche Agronomique 9: 167180.Google Scholar
Boivin, G. 1994. Overwintering strategies of egg parasitoids. pp. 219244in Wajnberg, E., and Hassan, S.A. (Eds.), Biological Control with Egg Parasitoids. C.A.B. International, Wallingford, England.Google Scholar
Bonnemaison, L. 1972. Diapause et superparasitisme chez Trichogramma evanescens Westwood. Bulletin de la Societé Entomologique de France 5: 123132.Google Scholar
Corrigan, J.E., and Laing, J.E.. 1994. Effects of the rearing host species and the host species attacked on performance by Trichogramma minutum Riley (Hymenoptera: Trichogrammatidae). Environmental Entomology 23: 755760.CrossRefGoogle Scholar
Flanders, S.E. 1937. Notes on the life history and anatomy of Trichogramma. Annals of the Entomological Society of America 30: 304308.CrossRefGoogle Scholar
Houseweart, M.W., Jennings, D.T., Pease, S.H., and Lawrence, R.K.. 1984. Alternate Insect Hosts and Characteristics of Forest Stands Supporting Native Populations of Trichogramma minutum Riley. University of Maine Miscellaneous Report 300: 32 pp.Google Scholar
Howard, L.O. 1937. Resumé and conclusions to Paul Marchal's extended paper on the Trichogrammas. Annals of the Entomological Society of America 30: 551557.CrossRefGoogle Scholar
Laing, J.E., and Eden, G.M.. 1990. Mass-production of Trichogramma minutum Riley on factitious host eggs. pp. 10–24 in Smith, S.M., Carrow, J.R., and Laing, J.E. (Eds.), Inundative Release of the Egg Parasitoid, Trichogramma minutum (Hymenoptera: Trichogrammatidae), against Forest Insect Pests such as the Spruce Budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae): The Ontario Project 1982–1986. Memoirs of the Entomological Society of Canada 153: 87 pp.Google Scholar
Lopez, J.D., and Morrison, R.K.. 1980. Overwintering of Trichogramma pretiosum in central Texas. Environmental Entomology 9: 7578.CrossRefGoogle Scholar
Marchal, P. 1936. Recherches sur la biologie et le développement des Hyménoptères parasites: les Trichogrammes. Annales des Epiphyties et de Phytogénétique 2: 447550.Google Scholar
Metcalf, C.L., Flint, W.P., and Metcalf, R.L.. 1962. Destructive and Useful Insects, 4th ed. McGraw-Hill, New York, NY. 478 pp.Google Scholar
Parker, F.D., and Pinnell, R.E.. 1971. Overwintering of some Trichogramma spp. in Missouri. Journal of Economic Entomology 64: 8081.CrossRefGoogle Scholar
Peterson, A. 1930. A Biological Study of Trichogramma minutum Riley an Egg Parasite of the Oriental Fruit Moth. USDA Technical Bulletin 215: 21 pp.Google Scholar
Peterson, A. 1931. Refrigeration of Trichogramma minutum and other notes. Journal of Economic Entomology 24: 10701074.CrossRefGoogle Scholar
Quednau, W. 1957. Über den Einfluss von Temperatur und Luftfeuchtigkeit auf den Eiparasiten Trichogramma cacoeciae Marchal. Mitteilungen der Biologischen Bundes-(Reichs) Anstalt fuer Land- und Forstwirtschaft 90: 163.Google Scholar
Rose, A.H., and Lindquist, O.H.. 1977. Insects of Eastern Spruces, Fir and Hemlock. Forestry Technical Report 23: 159 pp.Google Scholar
Rose, A.H., and Lindquist, O.H.. 1982. Insects of Eastern Hardwood Trees. Forestry Technical Report 29: 304 pp.Google Scholar
SAS Institute. 1985. SAS/STAT Guide for Personal Computers: Version 6 Edition. SAS Institute, Cary, NC.Google Scholar
Schread, J.C., and Garman, P.. 1934. Some effect of refrigeration on the biology of Trichogramma in artificial breeding. Journal of the New York Entomological Society 42: 263283.Google Scholar
Singh, R.R., and Moore, R.F. (Eds.). 1985. Handbook of Insect Rearing, Vol. 2. Elsevier, Amsterdam. 514 pp.Google Scholar
Stehr, F.W., and Cook, E.F.. 1968. A Revision of the Genus Malacosoma Hübner in North America (Lepidoptera: Lasiocampidae): Systematics, Biology, Immatures, and Parasites. United States National Museum Bulletin 276: 321 pp.Google Scholar
Tauber, M.J., Tauber, C.A., and Masaki, S.. 1986. Seasonal Adaptations of Insects. Oxford University Press, New York, NY. 411 pp.Google Scholar
Telenga, N.A. 1956. Studies on Trichogramma evanescens Westw. and T. Pallida Meyer [Hymenoptera, Trichogrammatidae] and their use in the USSR. Entomologicheskoye Obozreniye 35: 599610.Google Scholar
Voegelé, J. 1976. La diapause et l'hétérogénéité du développement chez les Aelia [Heteroptera, Pentatomidae] et les Trichogrammes [Hymenoptera, Trichogrammatidae]. Annales de Zoologie-Ecologie d'Animale 8: 367371.Google Scholar
Voegelé, J., Pizzol, J., and Babi, A.. 1988. The overwintering of some Trichogramma species. Les Colloques de l'Institut National de la Recherche Agronomique 43: 275282.Google Scholar
Voegelé, J., Pizzol, J., Raynaud, B., and Hawlitzky, N.. 1986. La diapause chez les Trichogrammes et les advantages pour la production de masse et la lutte biologique. Mededelingen van de Faculteit Diergeneeskunde Rijkuniversiteit Gent 51: 10331039.Google Scholar
Yamashita, O., and Yaginuma, T.. 1991. Silkworm eggs at low temperatures: Implications for sericulture. pp. 424–445 in Lee, R.E., and Denlinger, D.L. (Eds.), Insects at Low Temperature. Chapman and Hall, New York, NY. 513 pp.Google Scholar
Yu, D.S.K., Hagley, E.A.C., and Laing, J.E.. 1984. Biology of Trichogramma minutum Riley collected from apples in southern Ontario. Environmental Entomology 13: 13241329.CrossRefGoogle Scholar
Zaslavski, V.A., and Umarova, T. Ya.. 1981. Photoperiodic and temperature control of diapause in Trichogramma evanescens Westw. [Hymenoptera, Trichogrammatidae]. Entomologicheskoye Obozreniye 60: 721731.Google Scholar
Zaslavski, V.A., and Umarova, T. Ya.. 1990. Environmental and endogenous control of diapause in Trichogramma species. Entomophaga 35: 2329.CrossRefGoogle Scholar