Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T09:21:23.641Z Has data issue: false hasContentIssue false

Potential of bigleaf lupine for building and sustaining Osmia lignaria populations for pollination of apple

Published online by Cambridge University Press:  02 April 2012

Cory S. Sheffield*
Affiliation:
Department of Environmental Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1, and Agriculture and Agri-Food Canada, 32 Main Street, Kentville, Nova Scotia, Canada B4N 1J5
Sue M. Westby
Affiliation:
Agriculture and Agri-Food Canada, 32 Main Street, Kentville, Nova Scotia, Canada B4N 1J5
Robert F. Smith
Affiliation:
Agriculture and Agri-Food Canada, 32 Main Street, Kentville, Nova Scotia, Canada B4N 1J5
Peter G. Kevan
Affiliation:
Department of Environmental Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
*
2Corresponding author (e-mail: corys@yorku.ca).

Abstract

Bees of the genus Osmia Panzer (Hymenoptera: Megachilidae) are among the contenders to replace honey bees, Apis mellifera L. (Apidae), for pollinating tree-fruit crops. One species, Osmia lignaria Say, has shown great potential in western North America and was recently introduced into Nova Scotia for evaluation as a pollinator of apple, Malus Mill. (Rosaceae). A major component of that study was to develop management options for O. lignaria, including methods of sustaining nesting females following crop flowering to maximize population recovery for pollination in subsequent seasons. The objective of this study was to evaluate bigleaf lupine, Lupinus polyphyllus Lindl. (Fabaceae), as a secondary food plant for nesting female O. lignaria by investigating nesting activity, pollen-use patterns, and fecundity. During 2002–2003, female O. lignaria collected high proportions of apple pollen (>70%) during mid and late flowering; after then, most pollen (>90%) was collected from bigleaf lupine. The flowering period of lupine in Nova Scotia (late May to early July) slightly overlapped that of apple, so there was no scarcity of pollen resources during the life-span of O. lignaria. Most nests typically showed high levels (≤200%) of population growth, but recorded levels varied among nest types and locations. In 2004, nests closer to lupine plots exhibited significantly greater population recovery than nests located farther away (i.e., approximately 600 m). Bigleaf lupine is a suitable plant species for meeting the pollen requirements of nesting populations of O. lignaria following apple flowering, thus promoting the recovery of populations to meet apple pollination requirements in subsequent seasons.

Résumé

Les abeilles du genre Osmia Panzer (Hymenoptera: Megachilidae) font partie des candidats pour remplacer les abeilles domestiques, Apis mellifera L. (Apidae) pour la pollinisation des cultures d’arbres fruitiers. Une espèce, Osmia lignaria Say, qui montre un potentiel intéressant dans l’ouest de l’Amérique du Nord, a été introduite récemment en Nouvelle-Écosse pour être évaluée comme pollinisateur du pommier, Malus pumila Mill. (Rosaceae). Une partie importante de l’étude consistait en la mise au point de méthodes de gestion d’O. lignaria, en particulier des méthodes pour le maintien des femelles nidificatrices après la floraison des pommiers afin de maximiser la récupération de la population en vue de la pollinisation durant les saisons suivantes. L’objectif de ce travail est d’évaluer le lupin polyphylle, Lupinus polyphyllus Lindl. (Fabaceae), comme plante alimentaire secondaire des femelles nidificatrices d’O. lignaria, par des études de l’activité de nidification, des patrons d’utilisation des pollens et de la fécondité. En 2002–2003, les femelles d’O. lignaria ont récolté de fortes proportions de pollen de pommier (>70 %) durant les périodes moyenne et tardive de la floraison; plus tard, la majorité du pollen récolté (>90 %) provenait du lupin polyphylle. La période de floraison du lupin en Nouvelle-Écosse (de la fin de mai au début de juillet) chevauche un peu celle du pommier et il n’y a pas de pénurie de ressources polliniques durant la durée de la vie d’O. lignaria. La plupart des nids affichent généralement des taux élevés (≤200 %) de croissance de population, mais les taux sont variables en fonction des types de nids et des sites. En 2004, les nids plus près des parcelles de lupins avait un taux de récupération significativement supérieur à celui des nids situés plus loin (c’est-à-dire environ 600 m). Le lupin polyphylle est donc une espèce de plante appropriée pour satisfaire les besoins en pollen des populations nidificatrices d’O. lignaria après la floraison du pommier; il favorise la récupération de la population pour assurer la pollinisation des pommiers durant les années suivantes.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel, C.A., and Wilson, R.L. 1998. The use of diverse plant species for increasing Osmia cornifrons (Hymenoptera: Megachilidae) in field cages. Journal of the Kansas Entomological Society, 71: 2328.Google Scholar
Batra, S.W.T. 2001. Coaxing pollen bees to work for us. In Bees and crop pollination — crisis, crossroads, conservation. Edited by Stubbs, C.S. and Drummond, F.A.. Thomas Say Publications in Entomology: Proceedings, Entomological Society of America, Lanham, Maryland. pp. 8593.Google Scholar
Bohart, G.E. 1972. Management of wild bees for the pollination of crops. Annual Review of Entomology, 17: 287312.CrossRefGoogle Scholar
Bosch, J., and Kemp, W.P. 1999. Exceptional cherry production in an orchard pollinated with blue orchard bees. Bee World, 80: 163173.CrossRefGoogle Scholar
Bosch, J., and Kemp, W.P. 2001. How to manage the blue orchard bee as an orchard pollinator. Sustainable Agriculture Network Handbook Series No. 5, Beltsville, Maryland.Google Scholar
Cox-Foster, D.L., Conlan, S., Holmes, E.C., Palacios, G., Evans, J.D., Moran, N.A., Quan, P.-L., Briese, T., Hornig, M., Geiser, D.M., Martinson, V., vanEngelsdorp, D., Kalkstein, A.L., Drysdale, A., Hui, J., Zhai, J., Cui, L., Hutchison, S.K., Simons, J.F., Egholm, M., Pettis, J.S., and Lipkin, W.I. 2007. A metagenomic survey of microbes in honey bee colony collapse disorder. Science (Washington, D.C.), 318: 283287.Google Scholar
Dafni, A. 1992. Pollination ecology: a practical approach. Oxford University Press, New York.Google Scholar
DeGrandi-Hoffman, G. 1987. The honey bee pollination component of horticultural crop production systems. Horticultural Reviews, 9: 237272.Google Scholar
DeGrandi-Hoffman, G. 2003. Honey bees in U.S. agriculture: past, present, and future. In For non-native crops, whence pollinators of the future? Edited by Strickler, K. and Cane, J.H.. Thomas Say Publications in Entomology: Proceedings, Entomological Society of America, Lanham, Maryland. pp. 1120.Google Scholar
Dunn, D.B., and Gillett, J.M. 1966. The lupines of Canada and Alaska. Canada Department of Agriculture Monograph No. 2.Google Scholar
Free, J.B. 1993. Insect pollination of crops. 2nd ed. Academic Press, San Diego, California.Google Scholar
Gathmann, A., and Tscharntke, T. 2002. Foraging ranges of solitary bees. Journal of Animal Ecology, 71: 757764.CrossRefGoogle Scholar
Kevan, P.G. 2003. Pollination for the 21st century: integrating pollinator and plant interdependencies. In For nonnative crops, whence pollinators of the future? Edited by Strickler, K. and Cane, J.H.. Thomas Say Publications in Entomology: Proceedings, Entomological Society of America, Lanham, Maryland. pp. 181204.Google Scholar
Lindauer, M. 1967. Communication among social bees. Harvard University Press, Cambridge, Mass.Google Scholar
MacHardy, W.E. 2000. Current status of IPM in apple orchards. Crop Protection, 19: 801806.CrossRefGoogle Scholar
Michener, C.D. 2007. The bees of the world. 2nd ed. Johns Hopkins University Press, Baltimore, Md.Google Scholar
Minitab. 2000. Minitab statistical software. Release 13 [computer program]. Pennsylvania State University, State College, Pennsylvania.Google Scholar
Osgood, C.E. 1974. Relocation of nesting populations of Megachile rotundata, an important pollinator of alfalfa. Journal of Applied Research, 13: 6773.Google Scholar
Parker, F.D.S., Batra, S.W.T., and Tepidino, V.J. 1987. New pollinators for our crops. Agricultural Zoology Reviews, 2: 279307.Google Scholar
Sheffield, C.S. 2006. Diversity and management of bees for the pollination of apple in the Annapolis Valley of Nova Scotia. Ph.D. thesis, University of Guelph, Guelph, Ont.Google Scholar
Sheffield, C.S., Kevan, P.G., Westby, S.M., and Smith, R.F. 2008 a. Diversity of cavity-nesting bees (Hymenoptera: Apoidea) within apple orchards and wild habitats in the Annapolis Valley, Nova Scotia, Canada. The Canadian Entomologist, 140: 235249.CrossRefGoogle Scholar
Sheffield, C.S., Westby, S.M., Kevan, P.G., and Smith, R.F. 2008 b. Winter management options for the orchard pollinator Osmia lignaria (Hymenoptera: Megachilidae) in Nova Scotia. Journal of the Entomological Society of Ontario, 139. In press.Google Scholar
Stephen, W.P. 1973. Insects as natural resources and tools of management. In Insects: studies in population management. Edited by Geier, P.W., Clark, L.R., Anderson, D.J., and Nix, H.A.. Ecological Society of Australia Memoirs No. 1, Canberra, Australia. pp. 3144.Google Scholar
Strickler, K., and Cane, J.H. (Editors). 2003. For non-native crops, whence pollinators of the future? Thomas Say Publications in Entomology: Proceedings, Entomological Society of America, Lanham, Md.CrossRefGoogle Scholar
Torchio, P.F. 1984. Field experiments with the pollinator species, Osmia lignaria propinqua Cresson (Hymenoptera: Megachilidae) in apple orchards: III, 1977 studies. Journal of the Kansas Entomological Society, 57: 517521.Google Scholar
Torchio, P.F. 1985. Field experiments with the pollinator species, Osmia lignaria propinqua Cresson, in apple orchards: V (1979–1980), methods of introducing bees, nesting success, seed counts, fruit yields (Hymenoptera: Megachilidae). Journal of the Kansas Entomological Society, 58: 448464.Google Scholar
Torchio, P.F. 1990. Diversification of pollination strategies for U.S. crops. Environmental Entomology, 19: 16491656.CrossRefGoogle Scholar
Torchio, P.F. 2003. Development of Osmia lignaria (Hymenoptera: Megachildae) as a managed pollinator of apple and almond crops: a case history. In For nonnative crops, whence pollinators of the future? Edited by Strickler, K. and Cane, J.H.. Thomas Say Publications in Entomology: Proceedings, Entomological Society of America, Lanham, Md. pp. 6784.Google Scholar
Vicens, N., and Bosch, J. 2000. Nest site orientation and relocation of populations of the orchard pollinator Osmia cornuta (Hymenoptera: Megachilidae). Environmental Entomology, 29: 6975.CrossRefGoogle Scholar
von Frisch, K. 1967. The dance language and orientation of bees. Harvard University Press, Cambridge, Mass.Google Scholar
Williams, N.M. and Kremen, C. 2007. Resource distributions among habitats determine solitary bee offspring production in a mosaic landscape. Ecological Applications, 17: 910921.CrossRefGoogle Scholar
Zar, J.H. 1999. Biostatistical analysis. 4th ed. Prentice Hall, Upper Saddle River, N.J.Google Scholar
Zinck, M. 1998. Roland's flora of Nova Scotia. Nimbus Publishing and the Nova Scotia Museum, Halifax, N.S.Google Scholar