We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Drug carriers for oral delivery of peptides and proteins: accomplishments and future perspectives

    Catarina Pinto Reis

    * Author for correspondence

    Universidade Lusófona (CBIOS – Laboratory of Nanoscience & Biomedical Nanotechnology), Campo Grande 376, 1749–024 Lisboa, Portugal.

    ,
    Catarina Silva

    Universidade Lusófona (CBIOS – Laboratory of Nanoscience & Biomedical Nanotechnology), Campo Grande 376, 1749–024 Lisboa, Portugal

    Universidade Lusófona (CBIOS – Dermatology Experimental Unit), Campo Grande 376, 1749–024 Lisboa, Portugal

    ,
    Nuno Martinho

    Universidade Lusófona (CBIOS – Laboratory of Nanoscience & Biomedical Nanotechnology), Campo Grande 376, 1749–024 Lisboa, Portugal

    Universidade Lusófona (CBIOS – Dermatology Experimental Unit), Campo Grande 376, 1749–024 Lisboa, Portugal

    &
    Catarina Rosado

    Universidade Lusófona (CBIOS – Dermatology Experimental Unit), Campo Grande 376, 1749–024 Lisboa, Portugal

    Published Online:https://doi.org/10.4155/tde.12.143

    Effective formulation for peptide and protein delivery through the oral route has always been the critical effort with the advent of biotechnology. Stability, enzymatic degradation and ineffective absorption are common difficulties found for conventional dosage forms. As a result, new drug-delivery approaches are used to circumvent these limitations and enhance effective oral drug delivery. Some of these technologies have reached late stages of clinical trials and promising results will be available in the near future. This review covers, in general, the recent carriers reported in literature.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    References

    • Wawrezinieck A, Péan J-M, Wüthrich P, Benoit J-P. Biodisponibilitéet vecteurs particulaires pour la voieorale. Med. Sci.24(6–7),659–664 (2008).
    • Morishita M, Peppas NA. Is the oral route possible for peptide and protein drug delivery? Drug Discov. Today11(19–20),905–910 (2006).
    • Reis CP, Neufeld RJ, Ribeiro AJ, Veiga F. Nanoencapsulation II. Biomedical applicaions and current status of peptide and protein nanoparticulate delivery systems. Nanomedicine2(2),53–65 (2006).▪ Covers some of the historical and recent advances of nanotechnology and concludes that polymeric nanoparticles show great promise as a tool for the development of peptide drug-delivery systems.
    • Shaji J, Patole V. Protein and peptide drug delivery: oral approaches. Indian J. Pharm. Sci.70(3),269–277 (2008).
    • Almeida AJ, Souto E. Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Adv. Drug Deliv. Rev.59(6),478–490 (2007).▪ Review of solid lipid particulate systems as platforms to incorporate or adsorb peptides and proteins for administration by alternative routes such as oral, nasal and pulmonary.
    • Kamei N, Morishita M, Chiba H, Kavimandan NJ, Peppas NA, Takayama K. Complexation hydrogels for intestinal delivery of interferon beta and calcitonin. J. Control. Release134(2),98–102 (2009).
    • Martins S, Sarmento B, Ferreira DC, Souto EB. Lipid-based colloidal carriers for peptide and protein delivery – liposomes versus lipid nanoparticles. Int. J. Nanomedicine2(4),595–607 (2007).
    • Hamman JH, Demana PH, Olivier EI. Targeting receptors, transporters and site of absorption to improve oral drug delivery. Drug Target Insights2,71–81 (2007).
    • Fogueri LR, Singh S. Smart polymers for controlled delivery of proteins and peptides: a review of patents. Recent Pat. Drug Deliv. Formul.3(1),40–48 (2009).▪▪ Interesting review of new technologies to improve proteins absorption by different routes of administration. Focus on patented technologies and common limitations found for protein delivery.
    • 10  Slomkowski S, Gosecki M. Progress in nanoparticulate systems for peptide, proteins and nucleic acid drug delivery. Curr. Pharm. Biotechnol.12(11),1823–1839 (2011).
    • 11  Xia CQ, Wang J, Shen W-C. Hypoglycemic effect of insulin-transferrin conjugate in streptozotocin-induced diabetic rats. J. Pharmacol. Exp. Ther.295(2),594–600 (2000).
    • 12  Mishra B, Patel BB, Tiwari S. Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery. Nanomedicine6(1),9–24 (2010).
    • 13  Mahato R, Narang A, Thoma L, Miller D. Emerging trends in oral delivery of peptide and protein drugs. Crit. Rev. Ther. Drug Carrier Syst.20(2–3),153–214 (2003).
    • 14  Muller G. Oral delivery of protein drugs: driver for personalized medicine. Curr. Issues Mol. Biol.13(1),13–24 (2011).
    • 15  Laulicht B, Gidmark N, Tripathi A, Mathiowitz E. Localization of magnetic pills. Proc. Natl Acad. Sci. USA108(6),2252–2257 (2011).
    • 16  Werle M, Makhlof A, Takeuchi H. Carbopol–lectin conjugate coated liposomes for oral peptide delivery. Chem. Pharm. Bull58(3),432–434 (2010).
    • 17  Bernkop-Schnürch A. Chitosan and its derivatives: potential excipients for peroral peptide delivery systems. Int. J. Pharm.194(1),1–13 (2000).
    • 18  Ensign LM, Cone R, Hanes J. Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv. Drug Deliv. Rev.64(6),557–570 (2012).▪▪ Summary of the main problems and challenges for oral drug delivery and how nanotechnology can be an alternative to poor drug absorption or instability. The authors backup a complete ‘state of art’ about mucoadhesion and oral barriers.
    • 19  Filipe V, Hawe A, Jiskoot W. Critical evaluation of nanoparticle tracking analysis (NTA) by nanosight for the measurement of nanoparticles and protein aggregates. Pharm. Res.27(5),796–810 (2010).
    • 20  Guggi D, Kast C, Bernkop-Schnürch A. In vivo evaluation of an oral salmon calcitonin-delivery system based on a thiolated chitosan carrier matrix. Pharm. Res.20(12),1989–1994 (2003).
    • 21  Park K, Kwon IC, Park K. Oral protein delivery: current status and future prospect. React. Funct. Polym.71(3),280–287 (2011).
    • 22  Ankola DD, Ravi KMNV, Chiellini F, Solaro R. Multiblock copolymers of lactic acid and ethylene glycol containing periodic side-chain carboxyl groups: synthesis, characterization, and nanoparticle preparation. Macromolecules.42(19),7388–7395 (2009).
    • 23  Balamuralidhara V, Pramodkumar TM, Srujana N et al. pH sensitive drug delivery systems: a review. Am. J. Drug Discov. Dev.1,24–48 (2011).
    • 24  desRieux A, Fievez V, Garinot M, Schneider Y-J, Préat V. Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J. Control. Release116(1),1–27 (2006).▪▪ Important review of several carriers and their mechanistic absorption both in vitro and in vivo. Comprehensive description of the different factors that contribute to oral absorption of micro- and nano-particles.
    • 25  Niu M, Lu Y, Hovgaard L, Wu W. Liposomes containing glycocholate as potential oral insulin delivery systems: preparation, in vitro characterization, and improved protection against enzymatic degradation. Int. J. Nanomedicine6,1155–1166 (2011).
    • 26  Behrens I, Pena AI, Alonso MJ, Kissel T. Comparative uptake studies of bioadhesive and non-bioadhesive nanoparticles in human intestinal cell lines and rats: the effect of mucus on particle adsorption and transport. Pharm. Res.19(8),1185–1193 (2002).
    • 27  Brayden D, Mrsny R. Oral peptide delivery: prioritizing the leading technologies. Ther. Deliv.2(12),1567–1573 (2011).
    • 28  Rajeswari TS. Non invasiveinsulins: advanced insulin therapy over this decade. J. App. Pharm. Sci.1(8),12–20 (2011).
    • 29  Amory JK, Leonard ST, Page ST, O’Toole E, McKenna MJ. Oral administration of the GnRH antagonist acyline, in a GIPET-enhanced tablet form, acutely suppresses serum testosterone in normal men: single-dose pharmacokinetics and pharmacodynamics. Cancer Chemother. Pharmacol.64(3),641–645 (2009).
    • 30  Soltero R, Soltero R. Oral protein and peptide drug delivery. In: Drug Delivery: Principles and Applications. Wang B, Siahaan TJ, Soltero R (Eds). John Wiley & Sons, Inc., Hoboken, NJ, USA, 189–200 (2005).
    • 31  Kamei N, Morishita M, Eda Y, Ida N, Nishio R, Takayama K. Usefulness of cell-penetrating peptides to improve intestinal insulin absorption. J. Control. Release132(1),21–25 (2008).
    • 32  Makhlof A, Werle M, Tozuka Y, Takeuchi H. A mucoadhesive nanoparticulate system for the simultaneous delivery of macromolecules and permeation enhancers to the intestinal mucosa. J. Control. Release149(1),81–88 (2011).
    • 33  Bajpai AK, Shukla SK, Bhanu S, Kankane S. Responsive polymers in controlled drug delivery. Prog. Polym. Sci.33(11),1088–1118 (2008).
    • 34  Varshosaz J. Insulin delivery systems for controlling diabetes. Recent Pat. Endocr. Metab. Immune Drug Discov.1,25–40 (2007).
    • 35  Jafari B, Rafie F, Davaran S. Preparation and characterization of a novel smart polymeric hydrogel for drug delivery of insulin. Bio. Impacts.1(2),135–143 (2011).
    • 36  Mundargi RC, Rangaswamy V, Aminabhavi TM. pH-sensitive oral insulin delivery systems using eudragit microspheres. Drug Dev. Ind. Pharm.37(8),977–985 (2011).
    • 37  Shofner JP, Phillips MA, Peppas NA. Cellular evaluation of synthesized insulin/transferrin bioconjugates for oral insulin delivery using intelligent complexation hydrogels. Macromol. Biosci.10(3),299–306 (2010).
    • 38  Lin C-C, Anseth KS. Glucagon-like peptide-1 functionalized PEG hydrogels promote survival and function of encapsulated pancreatic beta-cells. Biomacromolecules10(9),2460–2467 (2009).
    • 39  Carr DA, Peppas NA. Assessment of poly(methacrylic acid-co-N-vinyl pyrrolidone) as a carrier for the oral delivery of therapeutic proteins using Caco-2 and HT29-MTX cell lines. J. Biomed. Mater. Res. A.92A(2),504–512 (2010).
    • 40  Wood KM, Stone GM, Peppas NA. The effect of complexation hydrogels on insulin transport in intestinal epithelial cell models. Acta. Biomater.6,48–56 (2010).
    • 41  Kavimandan NJ, Peppas NA. Confocal microscopic analysis of transport mechanisms of insulin across the cell monolayer. Int. J. Pharm.354,143–148 (2008).
    • 42  Wood KM, Stone GM, Peppas NA. Wheat germ agglutinin functionalized complexation hydrogels for oral insulin delivery. Biomacromolecules9(4),1293–1298 (2008).
    • 43  Sajeesh S, Bouchemal K, Marsaud V, Vauthier C, Sharma CP. Cyclodextrincomplexed insulin encapsulated hydrogel microparticles: an oral delivery system for insulin. J. Control. Release147(3),377–384 (2010).
    • 44  Qiu Y, Park K. Environment-sensitive hydrogels for drug delivery. Adv. Drug Deliv. Rev.53(1),321–339 (2012).
    • 45  Laroui H, Sitaraman SV, Merlin D. Gastrointestinal delivery of anti-inflammatory nanoparticles. Methods Enzymol.509,101–125 (2012).
    • 46  He C, Yin L, Tang C, Yin C. Size-dependent absorption mechanism of polymeric nanoparticles for oral delivery of protein drugs. Biomaterials33(33),8569–8578 (2012).
    • 47  Wang AZ, Gu F, Zhang L et al. Biofunctionalized targeted nanoparticles for therapeutic applications. Expert Opin. Biol.Ther.8(8),1063–1070 (2008).
    • 48  Damgé C, Vranckx H, Balschmidt P, Couvreur P. Poly(alkyl cyanoacrylate) nanospheres for oral administration of insulin. J. Pharm. Sci.86(12),1403–1409 (1997).
    • 49  Damgé C, Michel C, Aprahamian M, Couvreur P, Devissaguet JP. Nanocapsules as carriers for oral peptide delivery. J. Control. Release13(2–3),233–239 (1990).
    • 50  Russell-Jones GJ, Arthur L, Walker H. Vitamin B12-mediated transport of nanoparticles across CACO-2 cells. Inter. J. Pharm.179(2),247–255 (1999).
    • 51  LaVan DA, McGuire T, Langer R. Small-scale systems for in vivo drug delivery. Nat. Biotech.21(10),1184–1191 (2003).
    • 52  Mansour H, Sohn M, Al-Ghananeem A, Deluca P. Materials for pharmaceutical dosage forms: molecular pharmaceutics and controlled release drug delivery aspects. Int. J. Mol. Sci.11(9),3298–3322 (2010).
    • 53  Kayser O, Lemke A, Hernández-Trejo N. The impact of nanobiotechnology on the development of new drug delivery systems. Curr. Pharm. Biotechnol.6(1),3–5 (2005).
    • 54  Deacon MP, Davis SS, White RJ et al. Are chitosan–mucin interactions specific to different regions of the stomach? Velocity ultracentrifugation offers a clue. Carbohydr. Polym.38,235–238 (1999).
    • 55  Sreenivas S, Pai K. Thiolated chitosans: novel polymers for mucoadhesive drug delivery – a review. Trop. J. Pharm. Res.7(3),1077–1088 (2008).
    • 56  Sonaje K, Chen Y-J, Chen H-L et al. Enteric-coated capsules filled with freeze-dried chitosan/poly(gamma-glutamic acid) nanoparticles for oral insulin delivery. Biomaterials31(12),3384–3394 (2010).
    • 57  Yin L, Ding J, He C, Cui L, Tang C, Yin C. Drug permeability and mucoadhesion properties of thiolated trimethyl chitosan nanoparticles in oral insulin delivery. Biomaterials30(29),5691–5700 (2009).
    • 58  Luessen H, Verhoef J, Borchard G, Lehr C, de Boer A, Junginger H. Mucoadhesive polymers in peroral peptide drug delivery. II. Carbomer and polycarbophil are potent inhibitors of the intestinal proteolytic enzyme trypsin. Pharm. Res.12(9),1293–1298 (1995).
    • 59  Sarmento B, Ribeiro A, Veiga F, Sampaio P, Neufeld R, Ferreira D. Alginate/chitosan nanoparticles are effective for oral insulin delivery. Pharm. Res.24(12),2198–2206 (2007).
    • 60  Zhang Y, Wei W, Lv P, Wang L, Ma G. Preparation and evaluation of alginate-chitosan microspheres for oral delivery of insulin. Eur. J. Pharm. Biopharm.7(1),11–19 (2011).
    • 61  Cheng J, Teply B, Jeong S et al. Magnetically responsive polymeric microparticles for oral delivery of protein drugs. Pharm. Res.23(3),557–564 (2006).
    • 62  Si L, Zhao Y, Huang J, Li S, Zhai X, Li G. Calcium pectinate gel bead intended for oral protein delivery: preparation improvement and formulation development. Chem. Pharm. Bull.57(7),663–667 (2009).
    • 63  Damgé C, Michel C, Aprahamian M, Couvreur P. New approach for oral administration of insulin with polyalkylcyanoacrylate nanocapsules as drug carrier. Diabetes37(2),246–251 (1988).
    • 64  Damgé C, Aprahamian M, Humbert W, Pinget M. Ileal uptake of polyalkylcyanoacrylate nanocapsules in the rat. J. Pharm. Pharmacol.52(9),1049–1056 (2000).
    • 65  Damgé C, Maincent P, Ubrich N. Oral delivery of insulin associated to polymeric nanoparticles in diabetic rats. J. Control. Release117(2),163–170 (2007).
    • 66  Peppas N, Thomas J, McGinty J. Molecular aspects of mucoadhesive carrier development for drug delivery and improved absorption. J. Biomater. Sci. Polym. Ed.20(1),1–20 (2009).
    • 67  Kajal H, Misra A. Preparation of tetanus toxoid and ovalbumin loaded gliadin nanoparticles for oral immunization. J. Biomed. Nanotechnol.7(1),211–212 (2011).
    • 68  Sarti F, Perera G, Hintzen F et al.In vivo evidence of oral vaccination with PLGA nanoparticles containing the immunostimulant monophosphoryl lipid A. Biomaterials32(16),4052–4057 (2011).
    • 69  Oostingh G, Casals E, Italiani P et al. Problems and challenges in the development and validation of human cell-based assays to determine nanoparticle-induced immunomodulatory effects. Part Fibre Toxicol.8(1),8 (2011).
    • 70  Garinot M, Fiévez V, Pourcelle V et al. PEGylated PLGA-based nanoparticles targeting M cells for oral vaccination. J. Control. Release120(3),195–204 (2007).
    • 71  Shahiwala A, Vyas T, Amiji M. Nanocarriers for systemic and mucosal vaccine delivery. Recent Pat. Drug Deliv. Formul.1(1),1–9 (2007).
    • 72  Fievez V, Plapied L, des Rieux A et al. Targeting nanoparticles to M cells with non-peptidic ligands for oral vaccination. Eur. J. Pharm. Biopharm.73(1),16–24 (2009).▪ Possible use of peptide and nonpeptide ligands for targeting M cells and how their own stability in the GI tract may affect the efficacy of nanoparticles uptake.
    • 73  Shakweh M, Ponchel G, Fattal E. Particle uptake by Peyer’s patches: a pathway for drug and vaccine delivery. Expert Opin. Drug Deliv.1(1),141–163 (2004).
    • 74  van der Lubben IM, Verhoef JC, Borchard G, Junginger HE. Chitosan and its derivatives in mucosal drug and vaccine delivery. Eur. J. Pharm. Sci.14(3),201–207 (2001).
    • 75  Tobio M, Sánchez A, Vila A et al. The role of PEG on the stability in digestive fluids and in vivo fate of PEG-PLA nanoparticles following oral administration. Colloids Surf. B Biointerfaces18(3–4),315–323 (2000).
    • 76  Manosroi J, Apriyani MG, Foe K, Manosroi A. Enhancement of the release of azelaic acid through the synthetic membranes by inclusion complex formation with hydroxypropyl-beta-cyclodextrin. Int. J. Pharm.293(1–2),235–240 (2005).
    • 77  Karande P, Mitragotri S. Enhancement of transdermal drug delivery via synergistic action of chemicals. Biochim. Biophys. Acta.1788(11),2362–2373 (2009).
    • 78  Lopez RFV, Seto JE, Blankschtein D, Langer R. Enhancing the transdermal delivery of rigid nanoparticles using the simultaneous application of ultrasound and sodium lauryl sulfate. Biomaterials32(3),933–941 (2011).
    • 79  Lambert D, O’Neill C, Padfield P. Depletion of Caco-2 cell cholesterol disrupts barrier function by altering the detergent solubility and distribution of specific tight-junction proteins. Biochem J.15(387-Pt2),553–560 (2005).
    • 80  Challa R, Ahuja A, Ali J, Khar RK. Cyclodextrins in drug delivery: an updated review. AAPS Pharm. Sci. Tech.6,E329–E357 (2005).
    • 81  Yuan Q, Lee E, Yeudall WA, Yang H. Dendrimer-triglycine-EGF nanoparticles for tumor imaging and targeted nucleic acid and drug delivery. Oral Oncol.46(9),698–704 (2010).
    • 82  Bhavsar MD, Tiwari SB, Amiji MM. Formulation optimization for the nanoparticles-in-microsphere hybrid oral delivery system using factorial design. J. Control. Release110(2),422–430 (2006).
    • 83  Nishino Y, Kubota A, Kanazawa T, Takashima Y, Ozeki T, Okada H. Improved intestinal absorption of a poorly water-soluble oral drug using mannitolmicroparticles containing a nanosolid drug dispersion. J. Pharm. Sci.101(11),4191–4200 (2012).
    • 84  Gundogdu E, Gonzalez AI, Karasulu E. Improvement of effect of water-in-oil microemulsion as an oral delivery system for fexofenadine: in vitro and in vivo studies. Int. J. Nanomedicine6,1631–1640 (2011).
    • 85  Cilek A, Celebi N, Tirnaksiz F, Tay A. A lecithin-based microemulsion of rh-insulin with aprotinin for oral administration: Investigation of hypoglycemic effects in non-diabetic and STZ-induced diabetic rats. Int. J. Pharm.298(1),176–185 (2005).
    • 86  Lv L, Tong C, Lv Q et al. Enhanced absorption of hydroxysafflor yellow A using a self-double-emulsifying drug delivery system: in vitro and in vivo studies. Int. J. Nanomedicine7,4099–4107 (2012).
    • 87  Qi X, Wang L, Zhu J, Hu Z, Zhang J. Self-double-emulsifying drug delivery system (SDEDDS): a new way for oral delivery of drugs with high solubility and low permeability. Int. J. Pharm.409(1–2),245–251 (2011).
    • 88  Lu Y, Park K. Polymeric micelles and alternative nanonized delivery vehicles for poorly soluble drugs. Int. J. Pharm. (2012) (In Press).
    • 89  Korting HC, Schäfer-Korting M. Carriers in the topical treatment of skin disease. In: Drug delivery. Schäfer-Korting M (Ed.). Springer Berlin Heidelberg, Germany 435–468 (2010).▪▪ Important text describing current status of different carriers for skin delivery and their relevance for clinical applications.
    • 90  Wang S, Tan M, Zhong Z, Chen M, Wang Y. Nanotechnologies for curcumin: an ancient puzzler meets modern solutions. J. Nanomaterials Article ID 723178 (2011).
    • 91  Fricker G, Kromp T, Wendel A et al. Phospholipids and lipid-based formulations in oral drug delivery. Pharm. Res.27(8),1469–1486 (2010).
    • 92  Torchilin V. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug. Discov.4(2),145–160 (2005).▪ Important overview of liposomes including their absorption, different technologies explored to improve their characteristics and their relevance for clinical setting.
    • 93  Schaffazick SR, Pohlmann AR, de Cordova CAS, Creczynski-Pasa TB, Guterres SS. Protective properties of melatonin-loaded nanoparticles against lipid peroxidation. Int. J. Pharm.289(1–2),209–213 (2005).
    • 94  Arayne M, Sultana N, Qureshi F. Review: nanoparticles in delivery of cardiovascular drugs. Pak. J. Pharm. Sci.20(4),340–348 (2007).
    • 95  Kalra S, Kalra B, Agrawal N. Oral insulin. Diabetol. Metab. Syndr.2(66), (2010).
    • 96  Imanaka H, Koide H, Shimizu K et al. Chemoprevention of tumor metastasis by liposomal and beta-sitosterol intake. Biol. Pharm. Bull.31(3),400–404 (2008).
    • 97  Geho W, Geho H, Lau J, Gana T. Hepatic-directed vesicle insulin: a review of formulation development and preclinical evaluation. J. Diabetes Sci. Technol.3(6),1451–1459 (2009).
    • 98  Han H-K, Shin H-J, Ha DH. Improved oral bioavailability of alendronate via the mucoadhesive liposomal delivery system. Eur. J. Pharm. Sci.46(5),500–507 (2012).
    • 99  Chung H, Kim J, Um JY, Kwon IC, Jeong SY. Self-assembled “nanocubicle” as a carrier for peroral insulin delivery. Diabetologia45(3),448–451 (2002).
    • 100  Lai J, Lu Y, Yin Z, Hu F, Wu W. Pharmacokinetics and enhanced oral bioavailability in beagle dogs of cyclosporine A encapsulated in glycerylmonooleate/poloxamer 407 cubic nanoparticles. Int. J. Nanomedicine5,13–23 (2010).
    • 101  Yang M, Lai SK, Wang Y-Y et al. Biodegradable nanoparticles composed entirely of safe materials that rapidly penetrate human mucus. Angew. Chem. Int. Ed. Engl.50(11),2597–2600 (2011).
    • 102  Yang R, Gao R, Li F, He H, Tang X. The influence of lipid characteristics on the formation, in vitro release, and in vivo absorption of protein-loaded SLN prepared by the double emulsion process. Drug Dev. Ind. Pharm.37(2),139–148 (2010).
    • 103  Elgart A, Cherniakov I, Aldouby Y, Domb AJ, Hoffman A. Lipospheres and pro-nanolipospheres for delivery of poorly water soluble compounds. Chem. Phys. Lipids.165(4),438–453 (2012).
    • 104  Kapitza C, Zijlstra E, Heinemann L, Castelli MC, Riley G, Heise T. Oral insulin: a comparison with subcutaneous regular human insulin in patients with type 2 diabetes. Diabetes Care33(6),1288–1290 (2010).
    • 105  Lee S, Lee J, Lee D, Kim S, Lee Y, Byun Y. A new drug carrier, N alpha-deoxycholyl-L-lysyl-methylester, for enhancing insulin absorption in the intestine. Diabetologia48(3),405–411 (2005).
    • 106  Wei W, Ma G-H, Wang L-Y, Wu J, Su Z-G. Hollow quaternized chitosan microspheres increase the therapeutic effect of orally administered insulin. Acta. Biomater.6(1),205–209 (2010).
    • 107  Morçöl T, Nagappan P, Nerenbaum L, Mitchell A, Bell SJD. Calcium phosphate-PEG-insulin-casein (CAPIC) particles as oral delivery systems for insulin. Int. J. Pharm.277(1–2),91–97 (2004).
    • 108  He Q, Mitchell A, Johnson S, Wagner-Bartak C, Morcol T, Bell SJ. Calcium phosphate nanoparticle adjuvant. Clin. Diagn. Lab. Immunol.7(6),899–903 (2000).
    • 109  Paul W, Sharma CP. Fatty acid conjugated calcium phosphate nanoparticles for protein delivery. Int. J. Appl. Ceram. Tec.7(2),129–138 (2010).
    • 110  Chen L, Liu L, Li C, Tan Y, Zhang, G. A new growth factor controlled drug release system to promote healing of bone fractures: nanospheres of recombinant human bone morphogenetic-2 and polylactic acid. J. Nanosci. Nanotechnol.11(4),3107–3114 (2011).
    • 111  Norman P. Diabetes pipeline: intense activity to meet unmet need report–overview. Cambridge Healthtech Institute, Cambridge, MA, USA (2010).
    • 201  Zion TC, Tsang HH, Ying JY. Glucose-sensitive nanoparticles for controlled insulin delivery. MEBCS (2003). http://hdl.handle.net/1721.1/3783
    • 202  Merrion Pharmaceuticals. www.merrionpharma.com/content/potfolio/pipeline.asp
    • 203  Pinto-Reis AC. Encapsulação de fármacos peptídicos pelo método de emulsificação/gelificação interna. Universidade de Coimbra, 2009. PhD Thesis. http://hdl.handle.net/10316/213
    • 204  Emisphere, ‘Oral GLP-1 for Type 2 diabetes’. www.emisphere.com/oral_GLP-1.html
    • 205  Emisphere, ‘Oral recombinant human growth hormone’. www.emisphere.com/oral_reconbinant_hgh.html
    • 206  Emisphere, ‘Salmon Calcitonin for Osteoarthritis and Osteoporosis’. www.emisphere.com/salmon_calcitonin.html